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Graph of a matrix

An×n : real symmetric matrix
G (A) : a graph G on n vertices 1, 2, . . . , n
i ∼ j if and only if i 6= j and aij 6= 0

G (A) does not depend on the diagonal entries of A

1

2

4

5

3

G

A =


2 1 3 0 −4
1 0 0 1 0
3 0 −1 0 0
0 1 0 0 0
−4 0 0 0 5



Then we say A ∈ S(G ).
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The λ, µ problem:

Given real numbers

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ µn−1 ≤ λn

and a family F of matrices, does there exist a matrix A ∈ F with
eigenvalues λi ’s such that A(1) has eigenvalues µi ’s?

Previous Results: For λ1 < µ1 < λ2 < · · · < µn−1 < λn, there is
a real symmetric matrix which realizes the given spectral data and
its graph is a given

I star [Fan, Pall 1957]

I path [Gladwell 1988]

I tree [Duarte 1989]

I connected graph [M, Shader 2013]
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Sketch of the proof for connected graphs:

I Choose a spanning tree of G , call it T .

I Solve the problem for T using Duarte’s method, call it A.

I Show that the A is “generic“, using a property similar to the
Strong-Arnold Property.

I Perturb the zero entries, and the implicit function theorem
guarantees the existence of a perturbation of the nonzero
entries such that the eigenvalues of A and A(1) remain the
same, without zeroing out those zero entries.
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How to show the Jacobian is nonsingular
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(
Jac(F )

A
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, X =
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k=0

αkA
k−1 +

2n−1∑
k=n+1

αk B̂
k−n−1

l th entry of αT Jac(F )

A

=


(il , jl ) entry of X ; l ≤ n − 1

(l − n + 1, l − n + 1) entry of X ; l ≥ n

→


X ◦ A = O

X ◦ I = O
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2n−1∑
k=1

αk

(
Jac(F )

A

)
k

, X =
n∑

k=0

αkA
k−1 +

2n−1∑
k=n+1

αk B̂
k−n−1

l th entry of αT Jac(F )

A

=


(il , jl ) entry of X ; l ≤ n − 1

(l − n + 1, l − n + 1) entry of X ; l ≥ n

→


X ◦ A = O

X ◦ I = O



How to show the Jacobian is nonsingular

Let p(x) :=
∑n

k=1 αkx
k−1, q(x) :=

∑2n−1
k=n+1 αkx

k−n−1

Then X = p(A) + q̃(B)

Hence Jac(F )
A

is nonsingular iff p(x), q(x) are zero polynomials.

Direct calculation: [A,X ](i) = O, so p(A) = −q̃(B), and
Ap(A) = p(A)B̃, i.e. A,B are intertwining matrices, and either
p(A) = O or A, B̃ share an eigenvalue. But A,B do not share any
eigenvalues, so the only possible case is that A has a zero
eigenvalue. But it can be shown that in this case B also has a zero
eigenvalue, which is a contradiction.

So, p(A) = O, but deg(minA(x)) = n and deg(p(x)) = n − 1. i.e.
p(x), q(x) are zero polynomials, thus α = O.
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How to show the Jacobian is nonsingular

Lemma:
Let A have the Duarte property with respect to the vertex i , G (A)
be a tree T , and X be a symmetric matrix such that

1. I ◦ X = O,

2. A ◦ X = O,

3. [A,X ](i) = O.

then X = O.



The λ, τ problem:

I Other types of interlacing? (C.K. Li)

I Second order Cauchy interlacing inequalities:
Delete rows and columns 1 and 2

λi ≤ τi ≤ λi+2

I From now on assume that a list of n λ’s and n− 2 τ ’s is given.

I We assume
λi < τi < λi+2

τi 6= λi+1

λ1<τ1<λ2<λ3<τ2<λ4<τ3<τ4<λ5<λ6<τ5<τ6<λ7<λ8
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λ1 λ2<λ3 λ4 λ5<λ6 λ7<λ8
< < < < < < < <
τ1 τ2 τ3<τ4 τ5<τ6

Lemma:
In the above list

I at most two τ ’s are consecutive, and we call them τ−pairings.

I at most two λ’s are consecutive, and we call them λ−pairings.

I the τ−pairings interlace the λ−pairings.
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I at most two τ ’s are consecutive, and we call them τ−pairings.

I at most two λ’s are consecutive, and we call them λ−pairings.

I the τ−pairings interlace the λ−pairings.

Proof: Counting, Cauchy interlacing inequalities, and pigeonhole
principle.
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The λ, τ problem for a tree:

1 2

β1

β2

βs

α1

α2

αr

βα

I From now on assume that T is a tree on vertices 1, 2, . . ., n,
and vertices 1 and 2 are adjacent.



The λ, τ problem for a tree:

1 2

β1

β2

βs

α1

α2

αr

βα

Lemma:
If λi ’s are eigenvalues of A and τi ’s are eigenvalues of A({1, 2}),
then ∏n

i=1(x − λi )∏n−2
i=1 (x − τi )

= −a212 +
cA[α]

cA[α\{1}]

cA[β]
cA[β\{2}]

.



The λ, τ problem for a tree:

1 2

β1

β2

βs

α1

α2

αr

βα

Lemma:
If there are k τ−pairings, then |α|, |β| > k

Proof: Consider a pairing λi+1 < τi < τi+1 < λi+2

and assume both τ ’s are eigenvalues of T [β \ {2}].
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Lemma:
If there are k τ−pairings, then the list of λ’s and τ ’s can be
distributed into two lists of sizes r and s, respectively, with
r , s > 2k + 1, such that in each list, τ ’s interlace λ’s.



Lemma:
If there are k τ−pairings, then the list of λ’s and τ ’s can be
distributed into two lists of sizes r and s, respectively, with
r , s > 2k + 1, such that in each list, τ ’s interlace λ’s.

example:

λ1<τ1<λ2<λ3<τ2<λ4<τ3<τ4<λ5<λ6<τ5<τ6<λ7<λ8

distribute

arbitrarily

λ1 τ1

λ2

τ2 λ4

τ3 λ6 τ6 λ7
λ3 τ4 λ5 τ5 λ8

r = 9 :
s = 5 :

I The remaining is some pairs of the forms λ < τ and τ < λ
I Assign each of them to a list until the required size is

achieved.
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Theorem:

I T : a tree on vertices 1, . . . , n, and 1 and 2 are adjacent

I λ1, . . . , λn, τ1, . . . , τn−2 : given real numbers

I λi < τi < λi+2, (Cauchy interlacing inequalities)

I τi 6= λi+1, (nondegeneracy inequalities)

I There are k τ−pairings

I T [α \ {1}] and T [β \ {2}] each have at least k vertices.

Then there is a symmetric matrix A =
[
aij
]

with graph T and
eigenvalues λ1, . . . , λn such that eigenvalues of A({1, 2}) are
τ1, . . . , τn−2.
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Idea of the proof:

xλ1

τ1

λ2

τ2

λ3

τ3

λ4 λ5

τ4 τ5

λ6 λ7
y = −a212

f (x) =

∏n
i=1(x − λi )∏n−2
i=1 (x − τi )

.

I Let blue diamonds to be µ’s

I Distribute the list of µ’s and τ ’s into two lists of sizes 2|α| − 1
and 2|β| − 1
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βα

I Use Duarte’s result to realize matrices for A[α] and A[β].
I Define A to be 

a12

A[α]
a12

A[β]


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The λ− τ Problem For a Connected Graph

Theorem:

I G : a graph on vertices 1, . . . , n, and 1 and 2 are adjacent

I λ1, . . . , λn, τ1, . . . , τn−2 : given real numbers

I λi < τi < λi+2, (Cauchy interlacing inequalities)

I τi 6= λi+1, (nondegeneracy inequalities)

I There are k τ−pairings

I G has a spanning tree T containing the edge {1, 2} such that
T [α \ {1}] and T [β \ {2}] each have at least k vertices.

Then there is a symmetric matrix A =
[
aij
]

with graph G and
eigenvalues λ1, . . . , λn such that eigenvalues of A({1, 2}) are
τ1, . . . , τn−2.
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Idea of the proof:

I Solve the problem for the spanning tree.

I Show that the solution is generic, using previous results, and a
property similar to the Strong-Arnold Property.

I Perturb the zero entries small enough, and the implicit
function theorem guarantees some perturbation in nonzero
entries keep the eigenvalues of A and A({1, 2}) fixed, without
zeroing out those entries.
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Thank you!



Trees and the Duarte Property

1

2

4

5

3

T

1

2

4

5

3

T (1)

T2(1)

T3(1)

T5(1)

Matrix A has the Duarte property w.r.t to 1, when A ∈ S(T )

I Eigenvalues of A(1) strictly interlace those of A,

I A2(1),A3(1), and A5(1) have the Duarte property, w.r.t. 2,3,
and 5, respectively.
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