The $\lambda - \tau$ Inverse Eigenvalue Problem

Keivan Hassani Monfared

Joint work with Bryan Shader University of Wyoming

Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

Graph of a matrix

 $A_{n \times n}$: real symmetric matrix G(A): a graph G on n vertices 1, 2, ..., n $i \sim j$ if and only if $i \neq j$ and $a_{ij} \neq 0$

Graph of a matrix

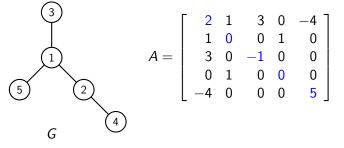
 $A_{n \times n}$: real symmetric matrix G(A): a graph G on n vertices 1, 2, ..., n $i \sim j$ if and only if $i \neq j$ and $a_{ij} \neq 0$

G(A) does not depend on the diagonal entries of A

Graph of a matrix

 $A_{n \times n}$: real symmetric matrix G(A): a graph G on n vertices 1, 2, ..., n $i \sim j$ if and only if $i \neq j$ and $a_{ij} \neq 0$

G(A) does not depend on the diagonal entries of A



Then we say $A \in S(G)$.

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

Previous Results: For $\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n$, there is a real symmetric matrix which realizes the given spectral data and its graph is a given

▶ star [Fan, Pall 1957]

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

- ▶ star [Fan, Pall 1957]
- ▶ path [Gladwell 1988]

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

- ▶ star [Fan, Pall 1957]
- path [Gladwell 1988]
- tree [Duarte 1989]

Given real numbers

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \leq \cdots \leq \mu_{n-1} \leq \lambda_n$$

and a family F of matrices, does there exist a matrix $A \in F$ with eigenvalues λ_i 's such that A(1) has eigenvalues μ_i 's?

- ▶ star [Fan, Pall 1957]
- ▶ path [Gladwell 1988]
- tree [Duarte 1989]
- connected graph [M, Shader 2013]

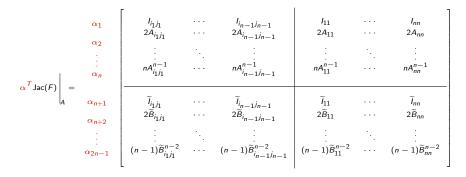
• Choose a spanning tree of G, call it T.

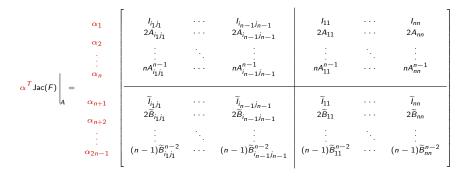
- Choose a spanning tree of G, call it T.
- Solve the problem for T using Duarte's method, call it A.

- Choose a spanning tree of G, call it T.
- ► Solve the problem for *T* using Duarte's method, call it *A*.
- Show that the A is "generic", using a property similar to the Strong-Arnold Property.

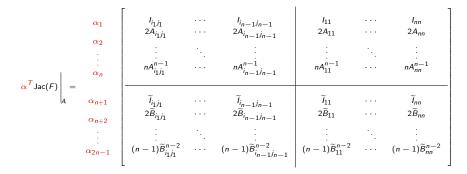
- Choose a spanning tree of G, call it T.
- Solve the problem for T using Duarte's method, call it A.
- Show that the A is "generic", using a property similar to the Strong-Arnold Property.
- Perturb the zero entries, and the implicit function theorem guarantees the existence of a perturbation of the nonzero entries such that the eigenvalues of A and A(1) remain the same, without zeroing out those zero entries.

$$\mathsf{Jac}(F) \bigg|_{A} = 2 * \begin{bmatrix} \begin{matrix} l_{i_{1}j_{1}} & \cdots & l_{i_{n-1}j_{n-1}} \\ 2A_{i_{1}j_{1}} & \cdots & 2A_{i_{n-1}j_{n-1}} \\ \vdots & \ddots & \vdots \\ nA_{i_{1}j_{1}}^{n-1} & \cdots & nA_{i_{n-1}j_{n-1}}^{n-1} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2A_{i_{1}j_{1}} & \cdots & 2A_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & nA_{i_{n-1}j_{n-1}}^{n-1} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \begin{matrix} l_{1} & \cdots & l_{n} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} \\ \hline \end{matrix} \right]$$

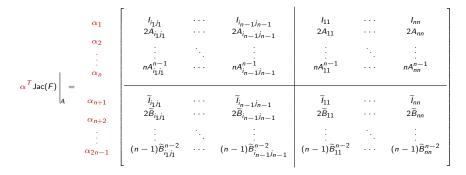




$$\boldsymbol{\alpha}^{\mathsf{T}}\mathsf{Jac}(F)\Big|_{\mathcal{A}} = \sum_{k=1}^{2n-1} \boldsymbol{\alpha}_{k} \left(\mathsf{Jac}(F)\Big|_{\mathcal{A}}\right)_{k}$$

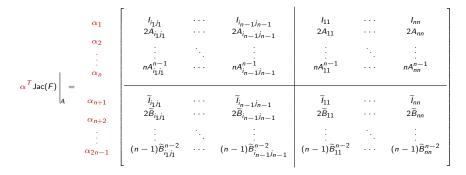


$$\alpha^{\mathsf{T}}\mathsf{Jac}(F)\Big|_{\mathcal{A}} = \sum_{k=1}^{2n-1} \alpha_{k} \left(\mathsf{Jac}(F)\Big|_{\mathcal{A}}\right)_{k}, \quad X = \sum_{k=0}^{n} \alpha_{k} A^{k-1} + \sum_{k=n+1}^{2n-1} \alpha_{k} \hat{B}^{k-n-1}$$



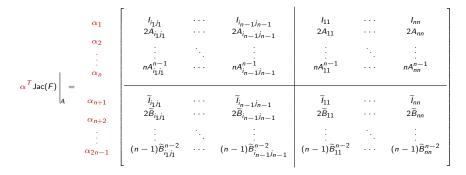
$$\frac{\alpha^{T} \operatorname{Jac}(F)}{\alpha} \bigg|_{\mathcal{A}} = \sum_{k=1}^{2n-1} \frac{\alpha_{k}}{\alpha_{k}} \left(\operatorname{Jac}(F) \bigg|_{\mathcal{A}} \right)_{k}, \quad X = \sum_{k=0}^{n} \frac{\alpha_{k}}{\alpha_{k}} A^{k-1} + \sum_{k=n+1}^{2n-1} \frac{\alpha_{k}}{\alpha_{k}} \hat{B}^{k-n-1}$$

$$I^{th} \text{ entry of } \alpha^{T} \operatorname{Jac}(F) \bigg|_{\mathcal{A}} = \begin{cases}$$



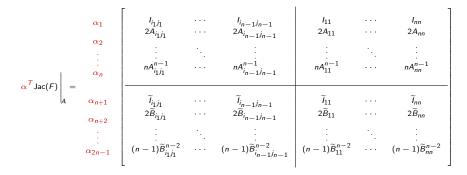
$$\frac{\alpha^{T} \operatorname{Jac}(F)}{A} = \sum_{k=1}^{2n-1} \frac{\alpha_{k}}{\alpha_{k}} \left(\operatorname{Jac}(F) \Big|_{A} \right)_{k}, \quad X = \sum_{k=0}^{n} \frac{\alpha_{k}}{\alpha_{k}} A^{k-1} + \sum_{k=n+1}^{2n-1} \frac{\alpha_{k}}{\alpha_{k}} \hat{B}^{k-n-1}$$

$$I^{th} \text{ entry of } \frac{\alpha^{T}}{\alpha_{k}} \operatorname{Jac}(F) \Big|_{A} = \begin{cases} (i_{l}, j_{l}) \text{ entry of } X & ; l \leq n-1 \end{cases}$$



$$\alpha^{T} \operatorname{Jac}(F) \bigg|_{A} = \sum_{k=1}^{2n-1} \alpha_{k} \left(\operatorname{Jac}(F) \bigg|_{A} \right)_{k}, \quad X = \sum_{k=0}^{n} \alpha_{k} A^{k-1} + \sum_{k=n+1}^{2n-1} \alpha_{k} \hat{B}^{k-n-1}$$

th entry of $\alpha^{T} \operatorname{Jac}(F) \bigg|_{A} = \begin{cases} (i_{l}, j_{l}) \text{ entry of } X & ; l \leq n-1 \\ (l-n+1, l-n+1) \text{ entry of } X & ; l \geq n \end{cases}$



$$\alpha^{T} \operatorname{Jac}(F) \bigg|_{A} = \sum_{k=1}^{2n-1} \alpha_{k} \left(\operatorname{Jac}(F) \bigg|_{A} \right)_{k}, \quad X = \sum_{k=0}^{n} \alpha_{k} A^{k-1} + \sum_{k=n+1}^{2n-1} \alpha_{k} \hat{B}^{k-n-1}$$

$$I^{th} \text{ entry of } \alpha^{T} \operatorname{Jac}(F) \bigg|_{A} = \begin{cases} (i_{l}, j_{l}) \text{ entry of } X & ; l \leq n-1 \\ (l-n+1, l-n+1) \text{ entry of } X & ; l \geq n \end{cases} \rightarrow \begin{cases} X \circ A = O \\ X \circ l = O \end{cases}$$

Let
$$p(x) := \sum_{k=1}^{n} \alpha_k x^{k-1}, q(x) := \sum_{k=n+1}^{2n-1} \alpha_k x^{k-n-1}$$

Let
$$p(x) := \sum_{k=1}^{n} \frac{\alpha_k}{\alpha_k} x^{k-1}, q(x) := \sum_{k=n+1}^{2n-1} \frac{\alpha_k}{\alpha_k} x^{k-n-1}$$

Then $X = p(A) + \widetilde{q(B)}$

Let
$$p(x) := \sum_{k=1}^{n} \alpha_k x^{k-1}, q(x) := \sum_{k=n+1}^{2n-1} \alpha_k x^{k-n-1}$$

Then $X = p(A) + \widetilde{q(B)}$

Hence $\operatorname{Jac}(F)\Big|_{A}$ is nonsingular iff p(x), q(x) are zero polynomials.

Let
$$p(x) := \sum_{k=1}^{n} \alpha_k x^{k-1}, q(x) := \sum_{k=n+1}^{2n-1} \alpha_k x^{k-n-1}$$

Then $X = p(A) + \widetilde{q(B)}$

Hence $\operatorname{Jac}(F)\Big|_{A}$ is nonsingular iff p(x), q(x) are zero polynomials.

Direct calculation: [A, X](i) = O, so p(A) = -q(B), and $Ap(A) = p(A)\tilde{B}$, i.e. A, B are intertwining matrices, and either p(A) = O or A, \tilde{B} share an eigenvalue. But A, B do not share any eigenvalues, so the only possible case is that A has a zero eigenvalue. But it can be shown that in this case B also has a zero eigenvalue, which is a contradiction.

Let
$$p(x) := \sum_{k=1}^{n} \alpha_k x^{k-1}, q(x) := \sum_{k=n+1}^{2n-1} \alpha_k x^{k-n-1}$$

Then $X = p(A) + \widetilde{q(B)}$

Hence $\operatorname{Jac}(F)\Big|_{A}$ is nonsingular iff p(x), q(x) are zero polynomials.

Direct calculation: [A, X](i) = O, so p(A) = -q(B), and $Ap(A) = p(A)\tilde{B}$, i.e. A, B are intertwining matrices, and either p(A) = O or A, \tilde{B} share an eigenvalue. But A, B do not share any eigenvalues, so the only possible case is that A has a zero eigenvalue. But it can be shown that in this case B also has a zero eigenvalue, which is a contradiction.

So, p(A) = O, but $deg(min_A(x)) = n$ and deg(p(x)) = n - 1. i.e. p(x), q(x) are zero polynomials, thus $\alpha = O$.

Lemma:

Let A have the Duarte property with respect to the vertex i, G(A) be a tree T, and X be a symmetric matrix such that

1. $I \circ X = O$, 2. $A \circ X = O$, 3. [A, X](i) = O.

then X = O.

Other types of interlacing? (C.K. Li)

- Other types of interlacing? (C.K. Li)
- Second order Cauchy interlacing inequalities: Delete rows and columns 1 and 2

$$\lambda_i \leq \tau_i \leq \lambda_{i+2}$$

- Other types of interlacing? (C.K. Li)
- Second order Cauchy interlacing inequalities: Delete rows and columns 1 and 2

$$\lambda_i \leq \tau_i \leq \lambda_{i+2}$$

From now on assume that a list of $n \lambda$'s and $n-2 \tau$'s is given.

- Other types of interlacing? (C.K. Li)
- Second order Cauchy interlacing inequalities: Delete rows and columns 1 and 2

$$\lambda_i \leq \tau_i \leq \lambda_{i+2}$$

From now on assume that a list of $n \lambda$'s and $n-2 \tau$'s is given.

We assume

 $\lambda_i < \tau_i < \lambda_{i+2}$ $\tau_i \neq \lambda_{i+1}$

- Other types of interlacing? (C.K. Li)
- Second order Cauchy interlacing inequalities: Delete rows and columns 1 and 2

$$\lambda_i \leq \tau_i \leq \lambda_{i+2}$$

- From now on assume that a list of $n \lambda$'s and $n 2 \tau$'s is given.
- We assume

 $\lambda_i < \tau_i < \lambda_{i+2}$ $\tau_i \neq \lambda_{i+1}$

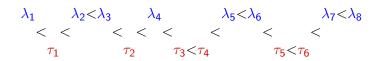
 $\lambda_{1} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{4} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{4} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \lambda_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{2} < \lambda_{3} < \tau_{3} < \tau_{4} < \lambda_{5} < \lambda_{6} < \tau_{5} < \tau_{6} < \lambda_{7} < \lambda_{8} < \tau_{1} < \tau_{2} < \tau_{1} < \tau_{2} < \tau_{1} < \tau_{2} < \tau_{1} < \tau_{2} < \tau_{2$

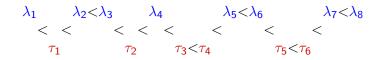
- Other types of interlacing? (C.K. Li)
- Second order Cauchy interlacing inequalities: Delete rows and columns 1 and 2

$$\lambda_i \leq \tau_i \leq \lambda_{i+2}$$

- From now on assume that a list of $n \lambda$'s and $n-2 \tau$'s is given.
- We assume

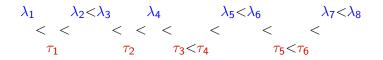
 $\lambda_i < \tau_i < \lambda_{i+2}$ $\tau_i \neq \lambda_{i+1}$





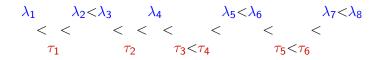
Lemma:

In the above list



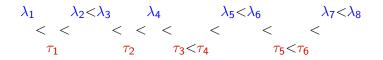
In the above list

• at most two τ 's are consecutive, and we call them τ -pairings.



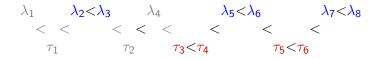
In the above list

- at most two τ 's are consecutive, and we call them τ -pairings.
- at most two λ 's are consecutive, and we call them λ -pairings.



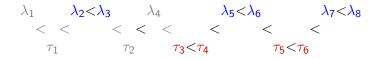
In the above list

- at most two τ 's are consecutive, and we call them τ -pairings.
- at most two λ 's are consecutive, and we call them λ -pairings.
- the τ -pairings interlace the λ -pairings.



In the above list

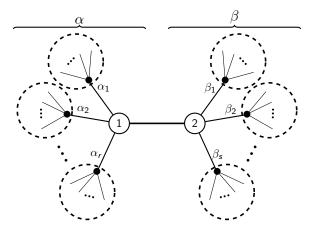
- at most two τ 's are consecutive, and we call them τ -pairings.
- at most two λ 's are consecutive, and we call them λ -pairings.
- the τ -pairings interlace the λ -pairings.



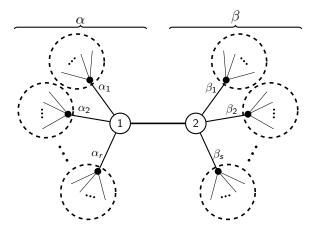
In the above list

- at most two τ 's are consecutive, and we call them τ -pairings.
- at most two λ 's are consecutive, and we call them λ -pairings.
- the τ -pairings interlace the λ -pairings.

Proof: Counting, Cauchy interlacing inequalities, and pigeonhole principle.



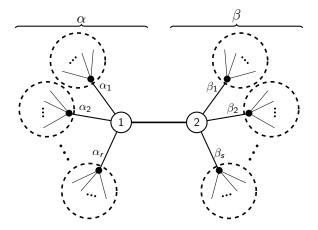
From now on assume that T is a tree on vertices 1, 2, ..., n, and vertices 1 and 2 are adjacent.



Lemma:

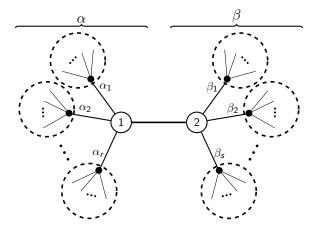
If λ_i 's are eigenvalues of A and τ_i 's are eigenvalues of $A(\{1,2\})$, then

$$\frac{\prod_{i=1}^{n}(x-\lambda_i)}{\prod_{i=1}^{n-2}(x-\tau_i)} = -a_{12}^2 + \frac{c_{A[\alpha]}}{c_{A[\alpha\setminus\{1\}]}} \frac{c_{A[\beta]}}{c_{A[\beta\setminus\{2\}]}}$$



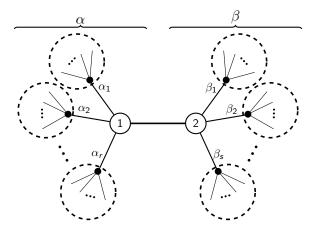
Lemma:

If there are $k \ \tau-\text{pairings, then} \ |\alpha|, |\beta| > k$



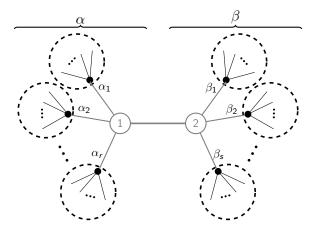
Lemma:

If there are $k \tau$ -pairings, then $|\alpha|, |\beta| > k$ **Proof:** Consider a pairing $\lambda_{i+1} < \tau_i < \tau_{i+1} < \lambda_{i+2}$



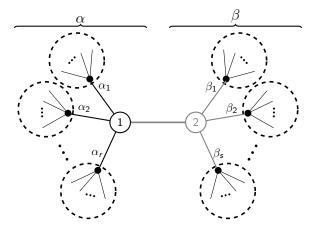
Lemma:

If there are $k \tau$ -pairings, then $|\alpha|, |\beta| > k$ **Proof:** Consider a pairing $\lambda_{i+1} < \tau_i < \tau_{i+1} < \lambda_{i+2}$ and assume both τ 's are eigenvalues of $T[\beta \setminus \{2\}]$.



Lemma:

If there are $k \tau$ -pairings, then $|\alpha|, |\beta| > k$ **Proof:** Consider a pairing $\lambda_{i+1} < \tau_i < \tau_{i+1} < \lambda_{i+2}$ and assume both τ 's are eigenvalues of $T[\beta \setminus \{2\}]$.



Lemma:

If there are $k \tau$ -pairings, then $|\alpha|, |\beta| > k$ **Proof:** Consider a pairing $\lambda_{i+1} < \tau_i < \tau_{i+1} < \lambda_{i+2}$ and assume both τ 's are eigenvalues of $T[\beta \setminus \{2\}]$.

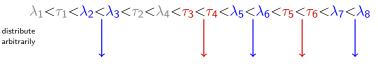
If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.

If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.

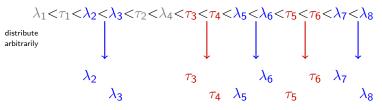
example:

 $\lambda_1 < \tau_1 < \lambda_2 < \lambda_3 < \tau_2 < \lambda_4 < \tau_3 < \tau_4 < \lambda_5 < \lambda_6 < \tau_5 < \tau_6 < \lambda_7 < \lambda_8$

If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.

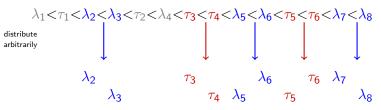


If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.



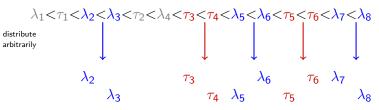
If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.

example:



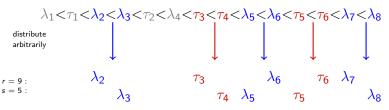
▶ The remaining is some pairs of the forms $\lambda < \tau$ and $\tau < \lambda$

If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.



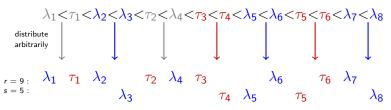
- The remaining is some pairs of the forms $\lambda < \tau$ and $\tau < \lambda$
- Assign each of them to a list until the required size is achieved.

If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.



- The remaining is some pairs of the forms $\lambda < \tau$ and $\tau < \lambda$
- Assign each of them to a list until the required size is achieved.

If there are $k \tau$ -pairings, then the list of λ 's and τ 's can be distributed into two lists of sizes r and s, respectively, with r, s > 2k + 1, such that in each list, τ 's interlace λ 's.



- The remaining is some pairs of the forms $\lambda < \tau$ and $\tau < \lambda$
- Assign each of them to a list until the required size is achieved.

• T: a tree on vertices $1, \ldots, n$, and 1 and 2 are adjacent

- T : a tree on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers

- T : a tree on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)

- T : a tree on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)

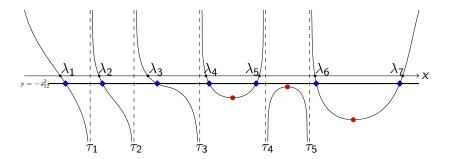
- T : a tree on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings

- ▶ *T* : a tree on vertices 1, ..., *n*, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings
- $T[\alpha \setminus \{1\}]$ and $T[\beta \setminus \{2\}]$ each have at least k vertices.

- ▶ *T* : a tree on vertices 1, ..., *n*, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings
- $T[\alpha \setminus \{1\}]$ and $T[\beta \setminus \{2\}]$ each have at least k vertices.

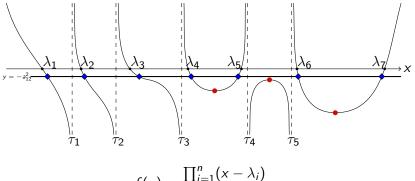
Then there is a symmetric matrix $A = [a_{ij}]$ with graph T and eigenvalues $\lambda_1, \ldots, \lambda_n$ such that eigenvalues of $A(\{1, 2\})$ are $\tau_1, \ldots, \tau_{n-2}$.

Idea of the proof:



$$f(x) = \frac{\prod_{i=1}^{n} (x - \lambda_i)}{\prod_{i=1}^{n-2} (x - \tau_i)}.$$

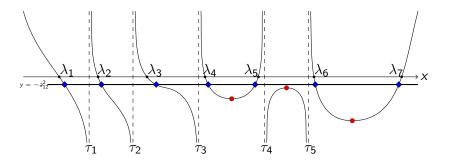
Idea of the proof:



$$f(x) = \frac{\prod_{i=1}^{n} (x - \tau_i)}{\prod_{i=1}^{n-2} (x - \tau_i)}$$

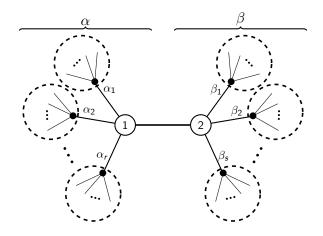
• Let blue diamonds to be μ 's

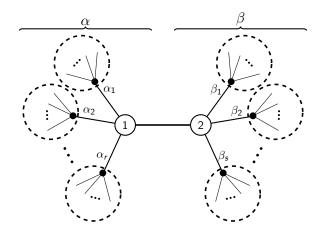
Idea of the proof:



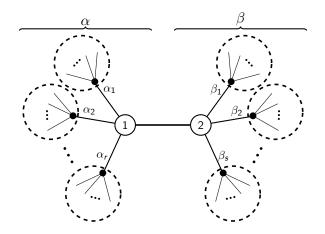
$$f(x) = \frac{\prod_{i=1}^{n} (x - \lambda_i)}{\prod_{i=1}^{n-2} (x - \tau_i)}$$

- Let blue diamonds to be μ 's
- ► Distribute the list of µ's and τ's into two lists of sizes 2|α| 1 and 2|β| - 1

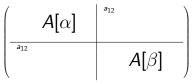




• Use Duarte's result to realize matrices for $A[\alpha]$ and $A[\beta]$.



Use Duarte's result to realize matrices for A[α] and A[β].
 Define A to be



The $\lambda-\tau$ Problem For a Connected Graph

The $\lambda-\tau$ Problem For a Connected Graph

Theorem:

• G : a graph on vertices $1, \ldots, n$, and 1 and 2 are adjacent

- G : a graph on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers

- G : a graph on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)

- ▶ G : a graph on vertices 1, ..., n, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)

- ▶ G : a graph on vertices 1, ..., n, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings

- G : a graph on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings
- G has a spanning tree T containing the edge $\{1,2\}$ such that $T [\alpha \setminus \{1\}]$ and $T [\beta \setminus \{2\}]$ each have at least k vertices.

Theorem:

- G : a graph on vertices $1, \ldots, n$, and 1 and 2 are adjacent
- $\lambda_1, \ldots, \lambda_n, \tau_1, \ldots, \tau_{n-2}$: given real numbers
- $\lambda_i < \tau_i < \lambda_{i+2}$, (Cauchy interlacing inequalities)
- $\tau_i \neq \lambda_{i+1}$, (nondegeneracy inequalities)
- There are $k \tau$ -pairings
- ► G has a spanning tree T containing the edge $\{1,2\}$ such that $T [\alpha \setminus \{1\}]$ and $T [\beta \setminus \{2\}]$ each have at least k vertices.

Then there is a symmetric matrix $A = [a_{ij}]$ with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ such that eigenvalues of $A(\{1, 2\})$ are $\tau_1, \ldots, \tau_{n-2}$.

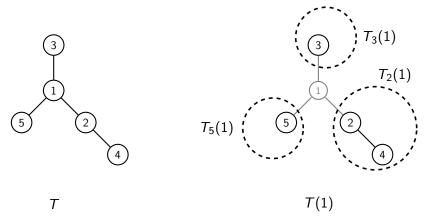
Solve the problem for the spanning tree.

- Solve the problem for the spanning tree.
- Show that the solution is generic, using previous results, and a property similar to the Strong-Arnold Property.

- Solve the problem for the spanning tree.
- Show that the solution is generic, using previous results, and a property similar to the Strong-Arnold Property.
- ► Perturb the zero entries small enough, and the implicit function theorem guarantees some perturbation in nonzero entries keep the eigenvalues of A and A({1,2}) fixed, without zeroing out those entries.

Thank you!

Trees and the Duarte Property



Matrix A has the Duarte property w.r.t to 1, when $A \in S(T)$

- Eigenvalues of A(1) strictly interlace those of A,
- ► A₂(1), A₃(1), and A₅(1) have the Duarte property, w.r.t. 2,3, and 5, respectively.