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Then we say A € S(G).
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a real symmetric matrix which realizes the given spectral data and
its graph is a given

» star [Fan, Pall 1957]

» path [Gladwell 1988]

» tree [Duarte 1989]

» connected graph [M, Shader 2013]
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Choose a spanning tree of G, call it T.

Solve the problem for T using Duarte's method, call it A.
Show that the A is “generic”, using a property similar to the
Strong-Arnold Property.

Perturb the zero entries, and the implicit function theorem
guarantees the existence of a perturbation of the nonzero

entries such that the eigenvalues of A and A(1) remain the
same, without zeroing out those zero entries.
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Let p(x) := 2h_g awx* 1, glx) = L cnxk !
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Then X = p(A) + q(B)

Hence Jac(F)| is nonsingular iff p(x), g(x) are zero polynomials.
A

Direct calculation: [A, X](i) = O, so p(A) = —c7(\§), and

Ap(A) = p(A)B, i.e. A, B are intertwining matrices, and either
p(A) = O or A, B share an eigenvalue. But A, B do not share any
eigenvalues, so the only possible case is that A has a zero
eigenvalue. But it can be shown that in this case B also has a zero
eigenvalue, which is a contradiction.

So, p(A) = O, but deg(mina(x)) = n and deg(p(x)) =n—1. ie.
p(x), g(x) are zero polynomials, thus a = O.



How to show the Jacobian is nonsingular

Lemma:
Let A have the Duarte property with respect to the vertex i, G(A)
be a tree T, and X be a symmetric matrix such that

1. o X =0,
2. Ao X =0,
3. [A, X](i) = O.

then X = O.
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Other types of interlacing? (C.K. Li)

Second order Cauchy interlacing inequalities:
Delete rows and columns 1 and 2

v

Ai <70 < Aigo

» From now on assume that a list of n A's and n— 2 7's is given.
> We assume
AN <1< )\,‘+2

Ti # Aig1

A1 )\2<)\3 A4 )\5 <)\6 )\7<)\3
< < < < < < < <
T1 T T3<T4 T5<T6
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A1 )\2<)\3 A4 )\5</\6 )\7<)\8
< < < < < < < <
T1 > T3<T4 T5<T6

Lemma:
In the above list

» at most two 7's are consecutive, and we call them 7—pairings.
» at most two \'s are consecutive, and we call them A—pairings.
» the T—pairings interlace the A—pairings.

Proof: Counting, Cauchy interlacing inequalities, and pigeonhole
principle.
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Lemma:
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then ,
I =) o Al CAps)
n—2 =—apt .
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Lemma:
If there are k T—pairings, then the list of A’s and 7's can be

distributed into two lists of sizes r and s, respectively, with
r,s > 2k 4 1, such that in each list, 7's interlace \'s.

example:
AN <T1 <A< A3< < <3< T3 < A5 < A\ <T5 <Te<A7<\g

% N T R T A

f—o. AL TL A2 T2 A4 T3 A6 Te A7
—5: A3 T4 As Ts Ag

» The remaining is some pairs of the forms A < 7 and 7 < A
» Assign each of them to a list until the required size is

achieved.
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There are k T—pairings
T [a\ {1}] and T [B\ {2}] each have at least k vertices.

v

v

Then there is a symmetric matrix A = [a,-j] with graph T and
eigenvalues A1, ..., \, such that eigenvalues of A({1,2}) are

T1y.--5Tn=2.
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> Let blue diamonds to be u's



Idea of the proof:

[T (x — /\i).
1720 —m)

f(x) =

> Let blue diamonds to be u's

» Distribute the list of u's and 7's into two lists of sizes 2|a| — 1
and 2|8 — 1






» Use Duarte's result to realize matrices for A[a] and A[5].



» Use Duarte's result to realize matrices for A[a] and A[5].
> Define A to be

a12

Ala]

AlB]
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Theorem:

» G : agraph on vertices 1,...,n, and 1 and 2 are adjacent

> Ai,...,An T1,...,Th—2 . given real numbers

v

Aj < Tj < Ajt2, (Cauchy interlacing inequalities)

v

Ti # Ait+1, (nondegeneracy inequalities)

v

There are k T—pairings

v

G has a spanning tree T containing the edge {1,2} such that
T[a\{1}] and T [B\ {2}] each have at least k vertices.

Then there is a symmetric matrix A = [a,-j] with graph G and
eigenvalues A1, ..., A\, such that eigenvalues of A({1,2}) are
Tlye-+sTn=2.
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» Solve the problem for the spanning tree.

» Show that the solution is generic, using previous results, and a
property similar to the Strong-Arnold Property.

> Perturb the zero entries small enough, and the implicit
function theorem guarantees some perturbation in nonzero
entries keep the eigenvalues of A and A({1,2}) fixed, without
zeroing out those entries.



Thank you!



Trees and the Duarte Property

T T(1)
Matrix A has the Duarte property w.r.t to 1, when A € S(T)

» Eigenvalues of A(1) strictly interlace those of A,

» Ax(1),As(1), and As(1) have the Duarte property, w.r.t. 2,3,
and 5, respectively.
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