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Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix
real symmetric
A with e-values A\y <--- < Ap

B : principal sub-matrix of A
with e-values 1 < -+ < pp_q

!

[

etc.

spectrum
real

M << <pp1 < An

(Cauchy interlacing inequalities)
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Graph of a matrix

Anxn : real symmetric matrix
G(A) : agraph Gon nvertices 1,2,...,n
i~ jifandonlyif i # jand a; # 0

G(A) does not depend on the diagonal entries of A
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0 0 0 1 0 1t 1 0 0 O
0 0 0 0 1 o 1 1 0 0
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Question

» Given real numbers A1, ..., \, and a family F of symmetric
matrices, Does there exist a matrix A € F with these
eigenvalues?

or equivalently

» Given a monic polynomial of degree n with n real roots,
and a family F of symmetric matrices, Does there exist a
matrix A € F with this characteristic polynomial?

» Inverse Eigenvalue Problems
» |IEP’s appear in various engineering contexts



Applications

» control design

» system identification

» seismic tomography

» principal component analysis
» exploration and remote sensing
» antenna array processing

» geophysics

» molecular spectroscopy

» particle physics

» structure analysis

» circuit theory

» mechanical system simulation
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A dynamic system:

Input u Output y
System State x

u=Ky+r

Feedback System:

x =Ax+ BKy + Br
= (A+BKC)x + Br
y =0Cx



Control System Design

A dynamic system:

Objectives
Output y -
System State x
Choose K to:
—Ky+r 1. assign eigenvalues / stabilize
(left half plane)
Feedback System: 2. assign eigenvectors -

inputs/outputs

x =Ax+ BKy + Br

3. ensure robustness
=(A+BK B . e :
(C + C)x + Br (insensitivity to disturbances)
y=0X



Classification of inverse eigenvalue problems, Chu 98

“Perhaps the most focused
IEPs are structured prob-
lems, where a matrix with a
specified structure as well
as a designated spectrum
is sought after. A lot of
times this structure comes
from the adjacency matrix
of a graph.”



Motivation



Example of a fixed-free system

k; : Hooke’s law constants
m; : masses

Vibrations described with Newton’s law of motion:

mup=F+60,,4—6,, r=1,2,....,n—1
Mmplp = Fn — 0p
By Hooke’s law:
Or =ke(ur—ur—q), r=1,2,...,n
u =20

Altogether:
Mu+ Ku=F
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ki kithk ke
K= = stiffness

—Rp-2 kn—2 + kn—1 *kn1
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Example of a fixed-free system

Mu+Ku=F

Ko+ ki —k
ki kithk ke

K= = stiffness

—An-2 kn—2 + kn—1 *kn1
—kn—1 Kn—1

» fixed and free?
» Fixed-Fixed, Free-Free
» |EP: Is there K such that \; are evalues of K?




Example of a fixed-free system

Jacobi matrix: a symmetric tridi-
agonal matrix K with negative off-
diagonal entries.

IEP: Is there a Jacobi matrix
such that eigenvalues of K are
M, ..., Ap and eigenvalues of K(1)
are i1, ..., fn-1?




Previous Results

Theorem (Gladwell 88)
For given {\;}7_, and {u,-},f’:‘11 there is a Jacobi matrix T with

o(T)={M,..., An}
and
U(T(j)):{ﬂ17---a#n—1}
if and only if
A< <Ao< <pip_g<Ap

Moreover such Jacobi matrix is unique.
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Previous Results

We want: Not necessarily a Jacobi matrix
» (Duarte 79) Any tree on n vertices realizes

M < <Ao< ...<pin_q1<An.

» (New result) Any connected graph on n vertices realizes

M < <do<...<pp_1<Apn



Previous Results

Theorem (Duarte 79)

T : a tree with vertices 1,2, ..., n

i:avertexof T

M < <Ao< pp <+ < pn_1 < Ap:real numbers

Then there is a (real) symmetric matrix A with graph T and
eigenvalues )1, ..., \p such that A(i) has eigenvalues
HAy ey n—1



Previous Results

Theorem (Duarte 79)

T : a tree with vertices 1,2, ..., n
i:avertexof T

M < <Ao< pp <+ < pn_1 < Ap:real numbers

Then there is a (real) symmetric matrix A with graph T and
eigenvalues )1, ..., \p such that A(i) has eigenvalues
HAy ey n—1

Proof: By induction on the number of vertices.



Previous Results

Theorem (Duarte 79)

T : a tree with vertices 1,2, ..., n
i:avertexof T

M < <Ao< pp <+ < pn_1 < Ap:real numbers

Then there is a (real) symmetric matrix A with graph T and

eigenvalues )1, ..., \p such that A(i) has eigenvalues
My ooy n—1
Proof: By induction on the number of vertices.

» Fork=2

X
A= [ljg y] Y =AM A2 =, X = /(A2 — ) (1 — Av)
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Previous Results

>

Suppose for any k < nthere is a matrix B with the desired
graph and spectral data.
For k = n, assume T(i) has m connected components
Ti(i), a <i<m).
By induction hypothesis there is B; with G(B;) = T;(i). Let
g; be the characteristic polynomial of B;.
Define:

fA) = (A= M)A = A2) - (A= An)

9(A) == g1(A)g(A) -+ - gm(})

Partial Fraction Decomposition:



Previous Results

» Suppose for any k < nthere is a matrix B with the desired
graph and spectral data.

» For k = n, assume T (/) has m connected components
Ti(i), a <i<m).

» By induction hypothesis there is B; with G(B;) = T;(i). Let
g; be the characteristic polynomial of B;.

» Define:

fA) = (A= M)A = A2) - (A= An)
9(A) == g1(A)g(A) -+ - gm(})

» Partial Fraction Decomposition:
» 3l a, and positive y1, ¥1,...,¥m
» 3l monic polynomials hy, hy, ..., Am, with deg(hy) < deg(g;) SUCh
that

LCY RPN < W (0
g0y~ A= 2 vigg,

» Furthermore, roots of h; strictly interlace the roots of g;



Previous Results

ol |,
B, 0
A— i"row \/—TH
y/'1 a yf2
O Vi B/z

» One can show that A realizes the given spectral data.
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Example

A -10 0 2
TR -1 1
i1
0 1 1 Xi X4 Xs
[1 0 o] DB M= |xs X2 O],M()
1 00 Xs 0 X3




Example

A —10 0 2
TR -1 1
i1
0 1 1 Xi X4 Xs
[1 0 o] OB M= x4, xo O ,/\/1(1)_[’(‘)2 0]
100 x5 0 X3 X3

X2:—1,X3:1
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Example

f) = (A +10)(AN) (A —2) = A3 4+ 8)2 — 20\

9N =g1(N)g(N) = A+ 1)(A—1) =X -1
() _



Example

f) = (A +10)(AN) (A —2) = A3 4+ 8)2 — 20\

g =g1(NG(A) = (A +1)(A—1) =12 -1

)
T (- (-8 - (QZ(AL) + 1(A1_1))

27 11

—_



Example

f) = (A +10)(AN) (A —2) = A3 4+ 8)2 — 20\

g =g1(NG(A) = (A +1)(A—1) =12 -1



The big picture
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Main Result

Theorem

G : a connected graph with vertices 1,2, ..., n

i . avertex of G

M <1 <Ao< pp<---<pp_q < Ap:real numbers

Then there is a (real) symmetric matrix A with graph G and
eigenvalues M1, ..., \n such that A(i) has eigenvalues
My - -5 n—1

Proof:
» G is connected, then G has a spanning tree T
» (Duarte) T realizes X's and p's — A, B := A(/)
» A has the Duarte property w.r.t to /, that is A is “generic”



The Duarte Property

Consider the tree T :

e-values of A(1) strictly interlace
those of A, and Ax(1) and As(1)
have the Duarte property
7s strictly interlace ;s

us strictly interlace \s

So A has the Duarte property w.r.t. 1




Main Result

» Consider the following matrix with its graph

—
OCO0OO0OO+~O OO

coor-OoOr-roOO0OOo

OO+~ O0OO0O—~O0OO0O T

OO0 O0O+~O v

—Oo0oo0o0O0OO+~+—O

TOO " T OO0OO0OO

OO+~ O+~OO0OO+~O

Or-rOoOr-r0oO0O0O~O0OO0o

T OO0 O0OO0O0

OO+ OO0OO0OOo




Main Result

» Choose a spanning tree of the graph

—
OCOO0O~O v OO

OCOO+~O O OO

CO~T OO ~00OO

O~ 0000~ O+

—Oo0O0OO0OO0OO~ O

TOO - T O0OO0O0O—

OCOr"O~O0OO0OO O

O—Or~O0OO0OO+~0OO0

T OO0 000

~--~o0O0O~-r-0OO0O0O
~N ——



Main Result

.n

» Substitute the diagonal entries by 2xk, «=1,2,..

J

OO0 O0O—~O+—~+0O

2x19

o
OO0OO0O—~O—+~ 0O XO
o
£
coroor-oXor
~
O-0O00O0 XO+
o
©
~O00O0 X0~ O
[N
(el
—O0OO0O— XO0OO0OO0OO—
o
S
ocorX+roOOO+~oO
N}
(e
o-X+~oO0OOr+rOO
o
N
—X-ooo~-ooo
[

%:100110000

~



Main Result

» Substitute the diagonal entries by xx, k=1.2,...,n
and nonzero entry of A at ik, jx by Xpik, k=1.2,...

2xq
X11
0
0
X12
X13
0
0
0
0

X11
2Xp
X14

>
o oo

oooa

o

N >
Rt S

oo -—+00

> N

o—_ocoo=

X ~oo

Fs

=

X16

X18

X15

oooo

2x7

—_“ a0

oo —+00

n >
& °3

- o

>
° o—-00o

O'>\<)O—‘
[

oo oo

x
=

n
Xo—==o
>



Main Result

» Substitute the diagonal entries by xx, k=1.2,...,n
and nonzero entry of A at ik, jx by Xpik, k=1.2,....n—1
and rest of the nonzero entries at iy, jx position of
the matrix of G by yk, k=1,2,....,m-n+1 this gives M, and

N := M(i)

2x1 X4 0 0 X2 X3 0 0 0
X11 2Xp  Xq4 0 0 0 X15 0 0
e 0 X4  2X3 Y1 0 0 0 Yo 0
o o 0 0 )2 2x4 Xy 0 0 0 Y3
a Q Xq2 0 0 X1 2Xs 0 0 0 0
X13 0 0 0 0 2Xg 0 Xig X9
0 Xi5 0 0 0 0 2x7 0 Ya
0 0 )2 0 0 X18 0 2xg 0
e o 0 0 0 ¥3 0 X19 Ya 0 2Xg
0 0 0 0 X17 0 V5 Y6 0



Main Result
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» Let x :=(X1,...,%X2n-1),Y = V1, Ym_ni1)
> g:Rm+n_>R2n—1
g(X7.y) = (007C1a"'7Cnf1ad07d17"'7dn72)

¢ : nonleading coeff’s of the characteristic polynomial of M
d; : nonleading coeff’s of the characteristic polynomial of N
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» Let x :=(X1,...,%X2n-1),Y = V1, Ym_ni1)
> g:Rm+n_>R2n—1

g(X7.y) = (007C1a"'7Cnf1ad07d17"'7dn72)

¢ : nonleading coeff’s of the characteristic polynomial of M
d; : nonleading coeff’s of the characteristic polynomial of N

> f(x,y) = (r M tr M2, tr M tr Ntr N2 tr N0
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Main Result

v

Let x :=(x1,...,Xen_1), ¥ == W1y, Ym_nt1)
g: Rm+n SN R2n—1

v

g(X7.y) = (007C1a"'7Cnf1ad07d17"'7dn72)

¢ : nonleading coeff’s of the characteristic polynomial of M
d; : nonleading coeff’s of the characteristic polynomial of N

f(x,y) = (trM,or M2, ... tr M tr Notr N2 tr NPT

Newton’s identities imply f is obtained from g by an invertible change of

v

v

variables, i.e. Jac(g)| is nonsingular iff Jac(f)| is nonsingular

A

» F(x) := f(x,0). Then Jac(f) I is nonsingular if Jac(F) I

A



Main Result

liyi o i 1in—1 b o Inn

24y, 24 iy 2Aq4 e 2Amn

n—1 n—1 n—1 n—1

nAI,”.1 s nAin,1in,1 nAY; s nAn,

Jac(F)| =2=

A Ty o Ty tin—1 i o fn

2By, 2B, i, 2By4 e 2Bpn

o . C o . o
(n71)B};’j1 (n71).‘3,."n71jn71 (n— 1B, -- (n=1)Bl;

o2
Il




Main Result

Jac(F)| =2=

o2
Il

Iy jy D 4in—1 h Inn
24, 24 i, 244 2Amn

n—1 n—1 n—1 n—1
i In—1in—1 s "

/'jh lir1—1/‘n—1 /1‘ lnn
2B, 2B i, 2By 2Bpn

\En—2 Zn—2 \En—2 \En—2

(n— 1)E3,.1j1 (n— 1).'3,."%1/'”71 (n— 1B, (n—1)B],
» Jac(F)| is nonsingular

A




Main Result

Jac(F)| =2=

o2
Il

Iy jy D 4in—1 I Inn
24, 24 i 2444 2Am
n—1 n—1 n—1 n—1
i In—1in—1 s "
i n—tin—1 i o
2B, 2B, i 2By 2B
\En—2 En—2 n2 n_2
(n— 1)BI.1J.1 (n— 1).‘3[.’7711}771 (n—1)By; (n—1)By,
» Jac(F)| is nonsingular
A
» Jac(f)| is nonsingular
A




Main Result

liyi o i 1in—1 b o Inn
2A,-1j1 2A’n—1fn—1 2A4¢ S 2Ann
n—1 ) n—1 n—1 ) n—1
nAI,”.1 S nA"n71l'n71 nAY; cee nAn,
Jac(F)| =2=
A l’jﬁ /in—1/‘n—1 /11 If"
25,‘111 2B’n—1fn—1 2By4 cee 2Bpn
(n— 1)5,.”1;2 o (n— 1)5,.";21]%1 (n—MBT2 .. (n—1)Bp?
» Jac(F)| is nonsingular
A
= » Jac(f)| is nonsingular
B= 4
» Jac(g)| is nonsingular
A
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continuous functions of y;'s in a neighbourhood of A



Main Result

» (Implicit Function Theorem) x;’s can be described as
continuous functions of y;'s in a neighbourhood of A

» so changing each y; to some ¢; one can find X; such that

9%, ..., Xen—1,€1 ... €m—ns1) = (Co,- .., Cn1, Qo, ..., Un—2)
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o o
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Example

pa

8 27 1
2 2 2
A= % —1 0 =M= X4 2X2 ] = ;(2 2};:|
IR ’ X5 Y 2X3 1 K

Then

F(X1,...,X5,O) :(2(X1 + Xo —I—X3),4X12 +2X42 +2X52 +4X22 -|—4X32,
8x1% + 6 X1x4% + 6 X1 X52 + 6 x4%X2 + 6 X52x3 + 8 %2 + 8 x3°
20x2 + X3), 4 (® + X5))



Example

2 2 2 0 0
8x4 8xo 8x3 4x4 4xs
Jac(F) = | 242 +6x3 +6x¢  24x +6x2 +6x  24x5 + 62 | 12x¢x4 + 12x0%  12x15 + 12x3%5
0 2 2 0 0

0 8x> 8X3 0 0
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2 2 2 0 0
8x4 8xo 8x3 4x4 4xs
Jac(F) = | 242 +6x3 +6x¢  24x +6x2 +6x  24x5 + 62 | 12x¢x4 + 12x0%  12x15 + 12x3%5
0 2 2 0 0
0 8x> 8X3 ‘ 0 0

det(Jac(f)) = 1536 x4 X5x32 — 3072 x4 X5 X3X2 + 1536 X5X4 %22 — (no x1)



Example

2 2 2 0 0
8x4 8xo 8x3 4x4 4xs
Jac(F) = | 242 +6x3 +6x¢  24x +6x2 +6x  24x5 + 62 | 12x¢x4 + 12x0%  12x15 + 12x3%5
0 2 2 0 0
0 8x> 8X3 ‘ 0 0

det(Jac(f)) = 1536 x4 X5x32 — 3072 x4 X5 X3X2 + 1536 X5X4 %22 — (no x1)

det(Jac(f)| ) = 46081132
A



Example

_8 9411 \/%ZSx/é
2v2 ' i
M= 9+\\F _% \/73 M_10,07Q
2V2 2
V66-3v6 V3 1
4 2 2
1 /3 i
e [—g ] eigenvalues |
V3 1 ’
2 2



Example

Orlet y; = 0.1, then

N -8 —3.552219778  2.526209542
M~ | —3.552219778 —0.9949874371 0.1
2.526209542 0.1 0.99498743710

igenval
e —9.999999999, —1.342005956 - 10~'5, 1.999999999

—0.9949874371 0.1 eigenvalues

0.1 0.99498743710 —1,1

m[



Some
Additional
Details



Newton’s ldentities

Let
n
k
Pu(Xt,. Xp) =) X=X+ X
and
eO(X17 7XI7) - 17
e1(X1,...,Xn) = X1+ Xp + - + Xn,
e (X1,...,Xn) = Z1gi</<nXIX/’
en(X1, .,Xn):X1X2"'XI’77
ex(X1,...,xn) =0, fork>n.
Then

k

kek(x1,. .. xn) = > _(=1)Tewi(xt,. .., xa)pi(X1, . .., Xn)
i=1



Newton’s Identities
Consider the characteristic polynomial of A:

n n

[Tt —x)=> (~1)at"*

i=1 k=0

and
n
Sk:pk(x17"'7xn) :lek

Then

S1 = a,

Sp = ai81 — 2a,

S3 = a1Sp — @Sy + 3as,

Sy = a1S3 — @S + azsy — 4ay,

and s, = tr AX. So trA, ..., trA” uniquely determine the
coefficients of the characteristic polynomial of A.



Jacobian

Lemma
Let (i,]) be a nonzero position of M with corresponding variable
X¢. Then

0 k\ _ k—1
@ 5 (trM ) = 2kM!

B, X kNS Sifij#n k1
®) OXt (trN ) { 0 ;oW 2kN’/



Jacobian

Lemma
Let (i,]) be a nonzero position of M with corresponding variable
X¢. Then

0 k\ _ k—1
@ 5 (trM ) = 2kM!

B, X kNS Sifij#n k1
®) OXt (trN ) { 0 ;oW 2kN’/

proof:
Ifi+#j

ox M= Fit B



Jacobian

Lemma
Let (i,]) be a nonzero position of M with corresponding variable
X¢. Then

0 k\ _ k—1
@ 5 (trM ) = 2kM!

B, X kNS Sifij#n k1
®) OXt (trN ) { 0 ;oW 2kN’/

proof:

If i
0
oM = Ei B
Ifi=j
0
%MZQE/,': E,j—l-Ej,



Jacobian

in either case

9 k) _ 10 k—I—1) ;
p (tr(M )) =3 tr (M MM (by the chain rule)
k—1 P
= tr (M’(—1 : &M) (since tr(AB) = tr(BA) for any A and B)

= 2k(MK=1y;. (since M is symmetric)



Jacobian

Corollary
lij o lin _ip—1 ol o frn
2A1), 2Ai 2Aq4 . 2Ann
n—1 o n—1 n—1 n—1
nAM1 nAin_”.n_1 nAy; S nAnn,
Jac(F)| =2x
ljﬁ /3171/.”71 Ty Ton
2By, 2B, 2By e 2Bnn
g2  \gn—2 \En—2 ) \En—2
(n 1)13,.1].1 (n 1)5,.”71/”71 (n— 1B, - (n—=1Bl




Jacobian

Lemma
Let A have the Duarte property with respect to the vertex 1,
G(A) be a tree T, and X be a symmetric matrix such that

1. lo X =0,

2. Ao X =0,

3. [A, X](1) = 0.
then X = O.
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Assume c'jac(F)| = 0 for some ¢
A

then cTjac(F) = p(A) + q(B)

Let Y := p(A) + q(B) then Yo A=0and Yo /= Oand

[A, p(A)] + [A, a(B)] = [A, V]

Since [A,p(A)] = O

[A, Y] =[A.q(B)] =




Jacobian

Assume c'jac(F)| = 0 for some ¢
A

then cTjac(F) = p(A) + q(B)

Let Y := p(A) + q(B) then Yo A=0and Yo /= Oand

[A, p(A)] + [A, a(B)] = [A, V]

Since [A,p(A)] = O

[A, Y] =[A.q(B)] =

By Lemma Y = O
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Let X := p(A) = —q(B)
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Jacobian
Let X := p(A) = —q(B)
By direct calculation AX = XB
If X ## O then A, B have a common eigenvalue
A has a zero eigenvalue where the corresponding eigenvector
is a linear combination of the columns of X. Similarly for B.

X2
=0=B| : =0
Xn

0 Xo



Jacobian
Let X := p(A) = —q(B)
By direct calculation AX = XB
If X ## O then A, B have a common eigenvalue
A has a zero eigenvalue where the corresponding eigenvector
is a linear combination of the columns of X. Similarly for B.

0\0 . 0 0 X
- 0 Xo 2
BX,;=1 . . =0=B| : =0
: B : X
0 Xn n

So X = O, hence ¢ = O. That s, Jac(F)| is invertible.
A



The Implicit Function Theorem

Theorem
xXeRS yeR

F : RSt — RS : continuously differentiable on an open subset U of R®*"

F(va) = (F1(X’y)7F2(X7y)7"‘7FS(X7y))7
(a,b) e Uwithae RS, beR"
¢ € R® such that F(a,b) = ¢

If | 9%

%, is nonsingular, then there exist an open

(a.b)
neighborhood V containing a and an open neighborhood W
containing b such that V x W C U and for each y € W there is

an x € V with

F(x,y)=rc
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such that A(1) has eigenvalues p;’'s and A({1,2}) has
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» Known: Given numbers Ay <--- < Apanday < --- < aj4
and 3y <--- < Bp_j, for 1 < j < n, then there exists a
unique Jacobi matrix T such that

» T has eigenvalues A, ..., An
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Future Research

» Known: Given numbers Ay <--- < Apanday < --- < aj4
and 3y <--- < Bp_j, for 1 < j < n, then there exists a
unique Jacobi matrix T such that

» T has eigenvalues A, ..., An

» The leading (j — 1) x (j — 1) principal submatrix has
eigenvalues oy < -+ < oyj_q

» The trailing (n — j) x (n— j) principal submatrix has
eigenvalues 31 < - <

if and only if

> {ai} N {Bi} =10

» for {p1 < -+ < ppt = {a;} U{Bi}, we have
M < 1 <)\2<---<>\n<,un

» What about trees and graphs instead of Jacobi matrices?



Thank You!!
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