Reconstruction of symmetric matrices with a given graph from interlaced spectral data

> Keivan Hassani Monfared Preliminary Exam

> Research Advisor: Bryan L. Shader University of Wyoming Department of Mathematics

> > September 11, 2012

Introduction

Spectral properties of a matrix (sub-matrix)

Spectral properties of a matrix (sub-matrix)

matrix ←→ **spectrum**

Spectral properties of a matrix (sub-matrix)

matrix ←→ **spectrum**

real symmetric ←→ real

Spectral properties of a matrix (sub-matrix)

matrix ←→ **spectrum** real symmetric \leftrightarrow real *A* : with e-values $\lambda_1 < \cdots < \lambda_n \iff \lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n$ *B* : principal sub-matrix of *A* (Cauchy interlacing inequalities) with e-values $\mu_1 < \cdots < \mu_{n-1}$

Spectral properties of a matrix (sub-matrix)

matrix ←→ **spectrum** real symmetric \leftrightarrow real *A* : with e-values $\lambda_1 < \cdots < \lambda_n \iff \lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n$ *B* : principal sub-matrix of *A* (Cauchy interlacing inequalities) with e-values $\mu_1 < \cdots < \mu_{n-1}$

etc.

Graph of a matrix

 $A_{n\times n}$: real symmetric matrix $G(A)$: a graph *G* on *n* vertices 1, 2, ..., *n i* ∼ *j* if and only if *i* \neq *j* and $a_{ij} \neq 0$

Graph of a matrix

 $A_{n\times n}$: real symmetric matrix *G*(*A*) : a graph *G* on *n* vertices 1, 2, . . . , *n i* ∼ *j* if and only if *i* \neq *j* and $a_{ij} \neq 0$

G(*A*) does not depend on the diagonal entries of *A*

Graph of a matrix

 $A_{n \times n}$: real symmetric matrix *G*(*A*) : a graph *G* on *n* vertices 1, 2, . . . , *n i* ∼ *j* if and only if *i* \neq *j* and $a_{ij} \neq 0$

G(*A*) does not depend on the diagonal entries of *A*

 $\left(\begin{array}{cccccccc} 1 & 1 & 0 & 0 & 1 & -5 & 0 & 0 & 0 & 0 \\ 1 & -2 & 2 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 \\ -5 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0$ Υ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Given real numbers $\lambda_1, \ldots, \lambda_n$ and a family *F* of symmetric matrices, Does there exist a matrix $A \in F$ with these eigenvalues?

If Given real numbers $\lambda_1, \ldots, \lambda_n$ and a family F of symmetric matrices, Does there exist a matrix $A \in F$ with these eigenvalues?

or equivalently

► Given a monic polynomial of degree *n* with *n* real roots, and a family *F* of symmetric matrices, Does there exist a matrix $A \in F$ with this characteristic polynomial?

If Given real numbers $\lambda_1, \ldots, \lambda_n$ and a family F of symmetric matrices, Does there exist a matrix $A \in F$ with these eigenvalues?

or equivalently

- ► Given a monic polynomial of degree *n* with *n* real roots, and a family *F* of symmetric matrices, Does there exist a matrix $A \in F$ with this characteristic polynomial?
- **Fi**nverse Eigenvalue Problems

If Given real numbers $\lambda_1, \ldots, \lambda_n$ and a family F of symmetric matrices, Does there exist a matrix $A \in F$ with these eigenvalues?

or equivalently

- ► Given a monic polynomial of degree *n* with *n* real roots, and a family *F* of symmetric matrices, Does there exist a matrix $A \in F$ with this characteristic polynomial?
- **Fi**nverse Eigenvalue Problems
- \blacktriangleright IEP's appear in various engineering contexts

Applications

- \triangleright control design
- \blacktriangleright system identification
- \blacktriangleright seismic tomography
- \triangleright principal component analysis
- \triangleright exploration and remote sensing
- \blacktriangleright antenna array processing
- \blacktriangleright geophysics
- \blacktriangleright molecular spectroscopy
- \blacktriangleright particle physics
- \blacktriangleright structure analysis
- \blacktriangleright circuit theory
- \blacktriangleright mechanical system simulation

 \blacktriangleright

Control System Design

A dynamic system:

Control System Design

A dynamic system:

Feedback System:

$$
\dot{x} = Ax + BKy + Br
$$

= (A + BKC)x + Br

$$
y = Cx
$$

Control System Design

A dynamic system:

Feedback System:

$$
\dot{x} = Ax + BKy + Br
$$

= (A + BKC)x + Br
y = Cx

Objectives

Choose *K* to:

- 1. assign eigenvalues / stabilize (left half plane)
- 2. assign eigenvectors inputs/outputs
- 3. ensure robustness (insensitivity to disturbances)

Classification of inverse eigenvalue problems, Chu 98

"Perhaps the most focused IEPs are structured problems, where a matrix with a specified structure as well as a designated spectrum is sought after. A lot of times this structure comes from the adjacency matrix of a graph."

Motivation

ki : Hooke's law constants *mi* : masses

Vibrations described with Newton's law of motion:

$$
m_r \ddot{u}_r = F_r + \theta_{r+1} - \theta_r, \quad r = 1, 2, \dots, n-1
$$

$$
m_n \ddot{u}_n = F_n - \theta_n
$$

By Hooke's law:

$$
\theta_r = k_r(u_r - u_{r-1}), \quad r = 1, 2, \dots, n
$$

$$
u_0 = 0
$$

Altogether:

$$
M\ddot{u}+Ku=F
$$

IFP: Is there *K* such that λ_i are evalues of *K*?

Jacobi matrix: a symmetric tridiagonal matrix *K* with negative offdiagonal entries.

IEP: Is there a Jacobi matrix such that eigenvalues of *K* are $\lambda_1, \ldots, \lambda_n$ and eigenvalues of $K(1)$ are μ_1, \ldots, μ_{n-1} ?

Theorem (Gladwell 88)

For given $\{\lambda_i\}_{i=1}^n$ and $\{\mu_i\}_{i=1}^{n-1}$ *i*=1 *there is a Jacobi matrix T with*

$$
\sigma(T)=\{\lambda_1,\ldots,\lambda_n\}
$$

and

$$
\sigma(T(j))=\{\mu_1,\ldots,\mu_{n-1}\}
$$

if and only if

$$
\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n.
$$

Moreover such Jacobi matrix is unique.

We want: Not necessarily a Jacobi matrix

We want: Not necessarily a Jacobi matrix

► (Duarte 79) Any tree on *n* vertices realizes

 $\lambda_1 < \mu_1 < \lambda_2 < \ldots < \mu_{n-1} < \lambda_n$.

We want: Not necessarily a Jacobi matrix

► (Duarte 79) Any tree on *n* vertices realizes

 $\lambda_1 < \mu_1 < \lambda_2 < \ldots < \mu_{n-1} < \lambda_n$.

► (New result) Any connected graph on *n* vertices realizes

 $\lambda_1 < \mu_1 < \lambda_2 < \ldots < \mu_{n-1} < \lambda_n$.

Theorem (Duarte 79)

T : *a tree with vertices 1,2, . . . , n i* : *a vertex of T* $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph T and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Theorem (Duarte 79)

T : *a tree with vertices 1,2, . . . , n i* : *a vertex of T* $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph T and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof: By induction on the number of vertices.

Theorem (Duarte 79)

T : *a tree with vertices 1,2, . . . , n i* : *a vertex of T* $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph T and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof: By induction on the number of vertices.

For
$$
k = 2
$$

$$
A = \begin{bmatrix} \mu_1 & x \\ x & y \end{bmatrix}, y = \lambda_1 + \lambda_2 - \mu_1, x = \sqrt{(\lambda_2 - \mu_1)(\mu_1 - \lambda_1)}
$$

Suppose for any $k < n$ there is a matrix *B* with the desired graph and spectral data.

- **Suppose for any** $k < n$ **there is a matrix B with the desired** graph and spectral data.
- For $k = n$, assume $T(i)$ has m connected components *T*_{*j*}(*i*), (1 ≤ *j* ≤ *m*).

- **If** Suppose for any $k < n$ there is a matrix B with the desired graph and spectral data.
- For $k = n$, assume $T(i)$ has m connected components *T*_{*j*}(*i*), (1 ≤ *j* ≤ *m*).
- \blacktriangleright By induction hypothesis there is B_i with $G(B_i) = T_i(i)$. Let *g^j* be the characteristic polynomial of *B^j* .
- **If** Suppose for any $k < n$ there is a matrix B with the desired graph and spectral data.
- For $k = n$, assume $T(i)$ has m connected components *T*_{*j*}(*i*), (1 ≤ *j* ≤ *m*).
- \blacktriangleright By induction hypothesis there is B_i with $G(B_i) = T_i(i)$. Let *g^j* be the characteristic polynomial of *B^j* .
- \blacktriangleright Define:

$$
f(\lambda) := (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)
$$

$$
g(\lambda) := g_1(\lambda)g_2(\lambda) \cdots g_m(\lambda)
$$

- **If** Suppose for any $k < n$ there is a matrix B with the desired graph and spectral data.
- For $k = n$, assume $T(i)$ has *m* connected components *T*_{*j*}(*i*), (1 ≤ *j* ≤ *m*).
- \blacktriangleright By induction hypothesis there is B_i with $G(B_i) = T_i(i)$. Let *g^j* be the characteristic polynomial of *B^j* .
- \blacktriangleright Define:

$$
f(\lambda) := (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)
$$

$$
g(\lambda) := g_1(\lambda)g_2(\lambda) \cdots g_m(\lambda)
$$

 \blacktriangleright Partial Fraction Decomposition:

- Suppose for any $k < n$ there is a matrix *B* with the desired graph and spectral data.
- For $k = n$, assume $T(i)$ has *m* connected components *T*_{*j*}(*i*), (1 ≤ *j* ≤ *m*).
- \blacktriangleright By induction hypothesis there is B_i with $G(B_i) = T_i(i)$. Let *g^j* be the characteristic polynomial of *B^j* .
- \blacktriangleright Define:

$$
f(\lambda) := (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)
$$

$$
g(\lambda) := g_1(\lambda)g_2(\lambda) \cdots g_m(\lambda)
$$

- \blacktriangleright Partial Fraction Decomposition:
	- \blacktriangleright ∃! *a*, and positive *y*₁, *y*₁, . . . , *y*_{*m*}
	- ▶ ∃! monic polynomials h_1, h_2, \ldots, h_m , with deg(h_j) < deg(g_j) <code>such</code> that

$$
\frac{f(\lambda)}{g(\lambda)}=(\lambda-a)-\sum_{j=1}^m y_j \frac{h_j(\lambda)}{g_j(\lambda)}
$$

Furthermore, roots of h_j strictly interlace the roots of g_j

 \triangleright One can show that *A* realizes the given spectral data.

 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

$$
\begin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{diagonals}} M = \begin{bmatrix} x_1 & x_4 & x_5 \ x_4 & x_2 & 0 \ x_5 & 0 & x_3 \end{bmatrix}, M(1) = \begin{bmatrix} x_2 & 0 \ 0 & x_3 \end{bmatrix}
$$

$$
\begin{bmatrix} 0 & 1 & 1 \ 1 & 0 & 0 \ 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{diagonals}} M = \begin{bmatrix} x_1 & x_4 & x_5 \ x_4 & x_2 & 0 \ x_5 & 0 & x_3 \end{bmatrix}, M(1) = \begin{bmatrix} x_2 & 0 \ 0 & x_3 \end{bmatrix}
$$

 $x_2 = -1, x_3 = 1$

$$
f(\lambda) = (\lambda + 10)(\lambda)(\lambda - 2) = \lambda^3 + 8\lambda^2 - 20\lambda
$$

$$
f(\lambda) = (\lambda + 10)(\lambda)(\lambda - 2) = \lambda^3 + 8\lambda^2 - 20\lambda
$$

$$
g(\lambda) = g_1(\lambda)g_2(\lambda) = (\lambda + 1)(\lambda - 1) = \lambda^2 - 1
$$

$$
f(\lambda) = (\lambda + 10)(\lambda)(\lambda - 2) = \lambda^3 + 8\lambda^2 - 20\lambda
$$

$$
g(\lambda) = g_1(\lambda)g_2(\lambda) = (\lambda + 1)(\lambda - 1) = \lambda^2 - 1
$$

$$
\frac{f(\lambda)}{g(\lambda)} = (\lambda - (-8)) - \left(\frac{27}{2}(\frac{1}{\lambda + 1}) + \frac{11}{2}(\frac{1}{\lambda - 1})\right)
$$

$$
f(\lambda) = (\lambda + 10)(\lambda)(\lambda - 2) = \lambda^3 + 8\lambda^2 - 20\lambda
$$

\n
$$
g(\lambda) = g_1(\lambda)g_2(\lambda) = (\lambda + 1)(\lambda - 1) = \lambda^2 - 1
$$

\n
$$
\frac{f(\lambda)}{g(\lambda)} = (\lambda - (-8)) - \left(\frac{27}{2}(\frac{1}{\lambda + 1}) + \frac{11}{2}(\frac{1}{\lambda - 1})\right)
$$

\n
$$
x_1 = -8, x_4 = \sqrt{\frac{27}{2}}, x_5 = \sqrt{\frac{11}{2}}
$$

$$
f(\lambda) = (\lambda + 10)(\lambda)(\lambda - 2) = \lambda^3 + 8\lambda^2 - 20\lambda
$$

\n
$$
g(\lambda) = g_1(\lambda)g_2(\lambda) = (\lambda + 1)(\lambda - 1) = \lambda^2 - 1
$$

\n
$$
\frac{f(\lambda)}{g(\lambda)} = (\lambda - (-8)) - \left(\frac{27}{2}(\frac{1}{\lambda + 1}) + \frac{11}{2}(\frac{1}{\lambda - 1})\right)
$$

\n
$$
x_1 = -8, x_4 = \sqrt{\frac{27}{2}}, x_5 = \sqrt{\frac{11}{2}}
$$

\n
$$
A = \begin{bmatrix} -8 & \sqrt{\frac{27}{2}} & \sqrt{\frac{11}{2}} \\ \sqrt{\frac{27}{2}} & -1 & 0 \\ \sqrt{\frac{11}{2}} & 0 & 1 \end{bmatrix}
$$

The big picture

Theorem

G : *a connected graph with vertices 1,2, . . . , n i* : *a vertex of G*

 $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Theorem

G : *a connected graph with vertices 1,2, . . . , n i* : *a vertex of G*

 $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof:

Theorem

G : *a connected graph with vertices 1,2, . . . , n i* : *a vertex of G*

 $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof:

 \blacktriangleright *G* is connected, then *G* has a spanning tree *T*

Theorem

G : *a connected graph with vertices 1,2, . . . , n i* : *a vertex of G*

 $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof:

- ► *G* is connected, then *G* has a spanning tree *T*
- \blacktriangleright (Duarte) *T* realizes λ 's and μ 's \rightarrow *A*, *B* := *A*(*i*)

Theorem

G : *a connected graph with vertices 1,2, . . . , n i* : *a vertex of G*

 $\lambda_1 < \mu_1 < \lambda_2 < \mu_2 < \cdots < \mu_{n-1} < \lambda_n$: real numbers

Then there is a (real) symmetric matrix A with graph G and eigenvalues $\lambda_1, \ldots, \lambda_n$ *such that* $A(i)$ *has eigenvalues* μ_1, \ldots, μ_{n-1}

Proof:

- ► *G* is connected, then *G* has a spanning tree *T*
- \triangleright (Duarte) *T* realizes λ 's and μ 's \rightarrow *A*, *B* := *A*(*i*)
- ▶ A has the Duarte property w.r.t to *i*, that is A is "generic"

The Duarte Property

Consider the tree *T* :

e-values of *A*(1) strictly interlace

those of A, and $A_2(1)$ and $A_3(1)$

have the Duarte property

 γ s strictly interlace μ s

 μ s strictly interlace λ s

So *A* has the Duarte property w.r.t. 1

 \triangleright Consider the following matrix with its graph

 \triangleright Choose a spanning tree of the graph

Substitute the diagonal entries by $2x_k$, $k = 1, 2, \ldots, n$

Substitute the diagonal entries by x_k , $k = 1, 2, \ldots, n$ and nonzero entry of *A* at i_k , i_k by x_{n+k} , $k = 1, 2, \ldots, n-1$

Substitute the diagonal entries by x_k , $k = 1, 2, \ldots, n$ and nonzero entry of *A* at i_k , i_k by x_{n+k} , $k = 1, 2, \ldots, n-1$ and rest of the nonzero entries at i_k , j_k position of the matrix of *G* by y_k , $k = 1, 2, \ldots, m - n + 1$ this gives *M*, and $N := M(i)$

• Let
$$
x := (x_1, ..., x_{2n-1}), y := (y_1, ..., y_{m-n+1})
$$

► Let
$$
x := (x_1, ..., x_{2n-1}), y := (y_1, ..., y_{m-n+1})
$$

\n► $g : \mathbb{R}^{m+n} \to \mathbb{R}^{2n-1}$

$$
g(x,y):=(c_0,c_1,\ldots,c_{n-1},d_0,d_1,\ldots,d_{n-2})
$$

cⁱ : nonleading coeff's of the characteristic polynomial of *M dⁱ* : nonleading coeff's of the characteristic polynomial of *N*

► Let
$$
x := (x_1, ..., x_{2n-1}), y := (y_1, ..., y_{m-n+1})
$$

\n► $g : \mathbb{R}^{m+n} \to \mathbb{R}^{2n-1}$

$$
g(x,y):=(c_0,c_1,\ldots,c_{n-1},d_0,d_1,\ldots,d_{n-2})
$$

cⁱ : nonleading coeff's of the characteristic polynomial of *M dⁱ* : nonleading coeff's of the characteristic polynomial of *N* ► $f(x, y) := ($ tr *M*, tr *M*², . . . , tr *Mⁿ*, tr *N*, tr *N*², . . . , tr *N*ⁿ⁻¹)

► Let
$$
x := (x_1, ..., x_{2n-1}), y := (y_1, ..., y_{m-n+1})
$$

\n► $g : \mathbb{R}^{m+n} \to \mathbb{R}^{2n-1}$

$$
g(x,y):=(c_0,c_1,\ldots,c_{n-1},d_0,d_1,\ldots,d_{n-2})
$$

cⁱ : nonleading coeff's of the characteristic polynomial of *M dⁱ* : nonleading coeff's of the characteristic polynomial of *N*

- ► $f(x, y) := ($ tr *M*, tr *M*², . . . , tr *Mⁿ*, tr *N*, tr *N*², . . . , tr *N*ⁿ⁻¹)
- Newton's identities imply *f* is obtained from *g* by an invertible change of variables, i.e. Jac (g) | is nonsingular iff Jac (f) | is nonsingular *A A*

► Let
$$
x := (x_1, ..., x_{2n-1}), y := (y_1, ..., y_{m-n+1})
$$

\n▶ $g : \mathbb{R}^{m+n} \to \mathbb{R}^{2n-1}$

$$
g(x,y):=(c_0,c_1,\ldots,c_{n-1},d_0,d_1,\ldots,d_{n-2})
$$

cⁱ : nonleading coeff's of the characteristic polynomial of *M dⁱ* : nonleading coeff's of the characteristic polynomial of *N*

- ► $f(x, y) := ($ tr *M*, tr *M*², . . . , tr *Mⁿ*, tr *N*, tr *N*², . . . , tr *N*ⁿ⁻¹)
- Newton's identities imply *f* is obtained from *g* by an invertible change of variables, i.e. Jac (g) | is nonsingular iff Jac (f) | is nonsingular *A A* $\overline{1}$

$$
\blacktriangleright \ \ F(x) := f(x,0). \ \text{Then } \text{Jac}(f) \Big|_{A} \ \text{is nonsingular if } \text{Jac}(F) \Big|_{A}
$$

$$
Jac(F)\Big|_{A} = 2 * \begin{bmatrix} l_{i_{1}j_{1}} & \cdots & l_{i_{n-1}j_{n-1}} & l_{11} & \cdots & l_{nn} \\ 2A_{i_{1}j_{1}} & \cdots & 2A_{i_{n-1}j_{n-1}} & 2A_{11} & \cdots & 2A_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 2A_{i_{1}j_{1}} & \cdots & 2A_{i_{n-1}j_{n-1}} & 2A_{i_{1}j_{1}} & \cdots & 2A_{nn} \\ \hline l_{i_{1}j_{1}} & \cdots & \tilde l_{i_{n-1}j_{n-1}} & \tilde l_{i_{1}j_{1}} & \cdots & \tilde l_{nn} \\ 2B_{i_{1}j_{1}} & \cdots & 2B_{i_{n-1}j_{n-1}} & 2B_{i_{1}1} & \cdots & 2B_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (n-1)\tilde{B}_{i_{1}j_{1}}^{n-2} & \cdots & (n-1)\tilde{B}_{i_{n-1}j_{n-1}}^{n-2} & (n-1)\tilde{B}_{i_{1}1}^{n-2} & \cdots & (n-1)\tilde{B}_{nn}^{n-2} \end{bmatrix}
$$

$$
\tilde{B} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \boldsymbol{B} & \\ 0 & & & \end{bmatrix}
$$

$$
AB = \begin{bmatrix} \frac{1_{i_1 i_1}}{2A_{i_1 i_1}} & \cdots & \frac{1_{i_{n-1} i_{n-1}}}{2A_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2A_{i_1 i_1}} & \cdots & \frac{1}{2A_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2A_{i_1 i_1}} & \cdots & \frac{1}{2A_{i_{n-1} i_{n-1}}} \\ \frac{1}{2B_{i_1 i_1}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_1 i_1}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_1 i_1}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n-1}}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2B_{i_{n-1} i_{n-1}}} & \cdots & \frac{1}{2B_{i_{n-1} i_{n
$$

$$
Aac(F)\Big|_{A} = 2 * \begin{bmatrix} I_{i_{1}i_{1}} & \cdots & I_{i_{n-1}i_{n-1}} & I_{11} & \cdots & I_{nn} \\ 2A_{i_{1}i_{1}} & \cdots & 2A_{i_{n-1}i_{n-1}} & 2A_{11} & \cdots & 2A_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 2A_{i_{1}i_{1}} & \cdots & 2A_{i_{n-1}i_{n-1}} & 2A_{i_{1}} & \cdots & 2A_{nn} \\ 2B_{i_{1}i_{1}} & \cdots & 2B_{i_{n-1}i_{n-1}} & 2B_{i_{1}} & \cdots & 2B_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (n-1)\tilde{B}_{i_{1}i_{1}}^{n-2} & \cdots & (n-1)\tilde{B}_{i_{n-1}i_{n-1}}^{n-2} & (n-1)\tilde{B}_{i_{1}}^{n-2} & \cdots & (n-1)\tilde{B}_{nn}^{n-2} \\ 0 & \cdots & 0 & A & \text{Jac}(F) \end{bmatrix} \text{ is nonsingular}
$$

$$
\tilde{B} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & \vdots & \ddots & \vdots \\ 0 & & & \end{bmatrix} \qquad \text{Jac}(f) \Big|_{A} \text{ is nonsingular}
$$

$$
B = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{\text{Jac}(f)} \begin{bmatrix} 1_{11} & \cdots & 1_{nn} \\ 2A_{i_{1}} & \cdots & 2A_{n_{n}} \\ \vdots & \ddots & \vdots \\ 0 & 0 \end{bmatrix}
$$
\n
$$
= 2 * \begin{bmatrix} \frac{1_{i_{1}i_{1}}}{nA_{i_{1}i_{1}}} & \cdots & \frac{1_{i_{n-1}i_{n-1}}}{nA_{i_{n-1}i_{n-1}}} & \frac{1_{i_{1}}}{nA_{i_{1}i_{1}}} & \cdots & \frac{1_{n_{n}}}{nA_{n_{n}}i_{n}} \\ \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{\text{Jac}(f)} \begin{bmatrix} 1_{11} & \cdots & 1_{nn} \\ 2_{i_{1}} & \cdots & 2_{i_{1}} \\ 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
\n
$$
= \begin{
$$
Main Result

 \blacktriangleright (Implicit Function Theorem) x_i 's can be described as continuous functions of *yⁱ* 's in a neighbourhood of *A*

Main Result

- \blacktriangleright (Implicit Function Theorem) x_i 's can be described as continuous functions of *yⁱ* 's in a neighbourhood of *A*
- ► so changing each y_i to some ϵ_i one can find \hat{x}_i such that $g(\hat{x}_1, \ldots, \hat{x}_{2n-1}, \epsilon_1, \ldots, \epsilon_{m-n+1}) = (c_0, \ldots, c_{n-1}, d_0, \ldots, d_{n-2})$

Then

 $F(x_1,...,x_5,0) = (2(x_1 + x_2 + x_3), 4x_1^2 + 2x_4^2 + 2x_5^2 + 4x_2^2 + 4x_3^2)$ $8x_1^3 + 6x_1x_4^2 + 6x_1x_5^2 + 6x_4^2x_2 + 6x_5^2x_3 + 8x_2^3 + 8x_3^3$ $2(x_2 + x_3), 4(x_2^2 + x_3^2))$

$$
\text{Jac}(F)=\left[\begin{array}{cc|cc}2&2&2&0&0\\8x_1&8x_2&8x_3&4x_4&4x_5\\ \hline 24x_1^2+6x_4^2+6x_5^2&24x_2^2+6x_4^2+6x_5^2&24x_3^2+6x_5^2&12x_1x_4+12x_2x_4&12x_1x_5+12x_3x_5\\ \hline 0&2&2&0&0\\ 0&8x_2&8x_3&0&0&0\end{array}\right]
$$

$$
\text{Jac}(F)=\left[\begin{array}{cc|cc}2&2&2&0&0\\8x_1&8x_2&8x_3&4x_4&4x_5\\ \hline 24x_1^2+6x_4^2+6x_5^2&24x_2^2+6x_4^2+6x_5^2&24x_3^2+6x_5^2&12x_1x_4+12x_2x_4&12x_1x_5+12x_3x_5\\ \hline 0&2&2&0&0\\ 0&8x_2&8x_3&0&0\end{array}\right]
$$

 $\text{det}(\text{Jac}(f)) = 1536\, \textit{x}_{4}\textit{x}_{5}\textit{x}_{3}{}^{2} - 3072\, \textit{x}_{4}\textit{x}_{5}\textit{x}_{3}\textit{x}_{2} + 1536\, \textit{x}_{5}\textit{x}_{4}\textit{x}_{2}{}^{2} \rightarrow \textsf{Jac}\, \textit{x}_{1}$

$$
\text{Jac}(F)=\left[\begin{array}{cc|cc}2&2&2&0&0\\8x_1&8x_2&8x_3&4x_4&4x_5\\ \hline 24x_1^2+6x_4^2+6x_5^2&24x_2^2+6x_4^2+6x_5^2&24x_3^2+6x_5^2&12x_1x_4+12x_2x_4&12x_1x_5+12x_3x_5\\ \hline 0&2&2&0&0\\ 0&8x_2&8x_3&0&0\end{array}\right]
$$

 $\text{det}(\text{Jac}(f)) = 1536\, \textit{x}_{4}\textit{x}_{5}\textit{x}_{3}{}^{2} - 3072\, \textit{x}_{4}\textit{x}_{5}\textit{x}_{3}\textit{x}_{2} + 1536\, \textit{x}_{5}\textit{x}_{4}\textit{x}_{2}{}^{2} \rightarrow \textsf{Jac}\, \textit{x}_{1}$

$$
\text{det}(\text{Jac}(f)\bigg|_{\mathcal{A}})=4608\sqrt{132}
$$

Let
$$
y_1 = \frac{\sqrt{3}}{2}
$$
, then
\n
$$
\widehat{M} = \begin{bmatrix}\n-\frac{8}{2\sqrt{2}} & \frac{9+\sqrt{11}}{2\sqrt{2}} & \frac{\sqrt{66}-3\sqrt{6}}{4} \\
\frac{9+\sqrt{11}}{2\sqrt{2}} & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{66}-3\sqrt{6}}{4} & \frac{\sqrt{3}}{2} & \frac{1}{2}\n\end{bmatrix}
$$
 eigenvalues $\widehat{N} = \begin{bmatrix}\n-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}\n\end{bmatrix}$ eigenvvalues $\longrightarrow -1, 1$

Or let $y_1 = 0.1$, then

$$
\widehat{M} \approx \begin{bmatrix}\n-8 & -3.552219778 & 2.526209542 \\
-3.552219778 & -0.9949874371 & 0.1 \\
2.526209542 & 0.1 & 0.99498743710\n\end{bmatrix}
$$

eigenvalues −−−−−−−−−→ −9.999999999, −1.342005956 · 10[−]¹⁵ , 1.999999999

 $\widehat{N} \approx \begin{bmatrix} -0.9949874371 & 0.1 \ 0.1 & 0.99498743710 \end{bmatrix} \xrightarrow{\mathsf{eigenvalues}} -1, 1$

Some Additional Details

Newton's Identities

Let

$$
p_k(x_1,...,x_n) = \sum_{i=1}^n x_i^k = x_1^k + \cdots + x_n^k
$$

and

$$
e_0(x_1,...,x_n) = 1,\n e_1(x_1,...,x_n) = x_1 + x_2 + \cdots + x_n,\n e_2(x_1,...,x_n) = \sum_{1 \le i < j \le n} x_i x_j,\n e_n(x_1,...,x_n) = x_1 x_2 \cdots x_n,\n e_k(x_1,...,x_n) = 0, \text{ for } k > n.
$$

Then

$$
ke_k(x_1,\ldots,x_n)=\sum_{i=1}^k (-1)^{i-1}e_{k-i}(x_1,\ldots,x_n)p_i(x_1,\ldots,x_n)
$$

Newton's Identities

Consider the characteristic polynomial of *A*:

$$
\prod_{i=1}^n (t-x_i) = \sum_{k=0}^n (-1)^k a_k t^{n-k}
$$

and

$$
s_k = p_k(x_1,\ldots,x_n) = \sum_{i=1}^n x_i^k
$$

Then

$$
s_1 = a_1,s_2 = a_1s_1 - 2a_2,s_3 = a_1s_2 - a_2s_1 + 3a_3,s_4 = a_1s_3 - a_2s_2 + a_3s_1 - 4a_4,\vdots
$$

and $s_k = \text{tr } A^k$. So tr $A, \ldots, \text{tr} A^n$ uniquely determine the coefficients of the characteristic polynomial of *A*.

Lemma

Let (*i*, *j*) *be a nonzero position of M with corresponding variable xt . Then*

(a)
$$
\frac{\partial}{\partial x_t} \left(\text{tr } M^k \right) = 2k M_{ij}^{k-1}
$$

\n(b) $\frac{\partial}{\partial x_t} \left(\text{tr } N^k \right) = \begin{cases} 2k N_{ij}^{k-1} & ; \text{if } i, j \neq n \\ 0 & ; \text{ o.} w \end{cases} = 2k \widehat{N}_{ij}^{k-1}$

Lemma

Let (*i*, *j*) *be a nonzero position of M with corresponding variable xt . Then*

(a)
$$
\frac{\partial}{\partial x_t} \left(\text{tr } M^k \right) = 2k M_{ij}^{k-1}
$$

\n(b) $\frac{\partial}{\partial x_t} \left(\text{tr } N^k \right) = \begin{cases} 2k N_{ij}^{k-1} & ; \text{if } i, j \neq n \\ 0 & ; \text{ o.} w \end{cases} = 2k \widehat{N}_{ij}^{k-1}$

proof: If $i \neq j$

$$
\frac{\partial}{\partial x_i}M=E_{ij}+E_{ji},
$$

Lemma

Let (*i*, *j*) *be a nonzero position of M with corresponding variable xt . Then*

(a)
$$
\frac{\partial}{\partial x_t} \left(\text{tr } M^k \right) = 2k M_{ij}^{k-1}
$$

\n(b) $\frac{\partial}{\partial x_t} \left(\text{tr } N^k \right) = \begin{cases} 2k N_{ij}^{k-1} & ; \text{if } i, j \neq n \\ 0 & ; \text{ o.} w \end{cases} = 2k \widehat{N}_{ij}^{k-1}$

proof: If $i \neq j$

$$
\frac{\partial}{\partial x_t}M=E_{ij}+E_{ji},
$$

If $i = i$

$$
\frac{\partial}{\partial x_t}M=2E_{ii}=E_{ij}+E_{ji}.
$$

in either case

$$
\frac{\partial}{\partial x_t} \left(\text{tr}(M^k) \right) = \sum_{i=0}^{k-1} \text{tr} \left(M^i \cdot \frac{\partial}{\partial x_t} M \cdot M^{k-i-1} \right) \qquad \text{(by the chain rule)}
$$
\n
$$
= \sum_{i=0}^{k-1} \text{tr} \left(M^{k-1} \cdot \frac{\partial}{\partial t} M \right) \qquad \text{(since tr}(AB) = \text{tr}(BA) \text{ for any } A \text{ and } B)
$$
\n
$$
= k \text{ tr} \left(M^{k-1} (E_{ij} + E_{ji}) \right)
$$
\n
$$
= k \left((M^{k-1})_{ij} + (M^{k-1})_{ji} \right)
$$
\n
$$
= 2k(M^{k-1})_{ij}.
$$
\n(since *M* is symmetric)

Corollary

$$
Jac(F)\Big|_{A} = 2*\left[\begin{array}{cccc|cccc} l_{i_1j_1} & \cdots & l_{i_{n-1}j_{n-1}} & l_{11} & \cdots & l_{nn} \\ 2A_{i_1j_1} & \cdots & 2A_{i_{n-1}j_{n-1}} & 2A_{11} & \cdots & 2A_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ nA_{i_1j_1}^{n-1} & \cdots & nA_{i_{n-1}j_{n-1}}^{n-1} & nA_{11}^{n-1} & \cdots & nA_{nn}^{n-1} \\ \hline \tilde{l}_{i_1j_1} & \cdots & \tilde{l}_{i_{n-1}j_{n-1}} & \tilde{l}_{i_1j_1} & \cdots & \tilde{l}_{nn} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ (n-1)\tilde{B}_{i_1j_1}^{n-2} & \cdots & (n-1)\tilde{B}_{i_{n-1}j_{n-1}}^{n-2} & (n-1)\tilde{B}_{11}^{n-2} & \cdots & (n-1)\tilde{B}_{nn}^{n-2} \\ \end{array}\right]
$$

Lemma

Let A have the Duarte property with respect to the vertex 1, $G(A)$ be a tree T, and X be a symmetric matrix such that

1. $I \circ X = 0$. 2. $A \circ X = 0$. 3. $[A, X](1) = O.$ then $X = Q$.

Assume
$$
c^T \text{jac}(F) \Big|_A = 0
$$
 for some c

Assume
$$
c^T \text{jac}(F) \Big|_A = 0
$$
 for some c
then $c^T \text{jac}(F) \Big|_A = p(A) + \widetilde{q(B)}$

Assume
$$
c^T \text{jac}(F) \Big|_A = 0
$$
 for some c
then $c^T \text{jac}(F) \Big|_A = p(A) + \widetilde{q(B)}$

Let $Y := p(A) + \widetilde{q(B)}$ then $Y \circ A = 0$ and $Y \circ I = O$ and

$$
[A, p(A)] + [A, \widetilde{q(B)}] = [A, Y]
$$

Assume
$$
c^T \text{jac}(F) \Big|_A = 0
$$
 for some c
then $c^T \text{jac}(F) \Big|_A = p(A) + \widetilde{q(B)}$

Let $Y := p(A) + q(\overline{B})$ then $Y \circ A = 0$ and $Y \circ I = O$ and $[A, p(A)] + [A, q(B)] = [A, Y]$

Since $[A, p(A)] = O$,

$$
[A, Y] = [A, \widetilde{q(B)}] = \begin{bmatrix} * & * & \cdots & * \\ * & & & \\ \vdots & & & \\ * & & & \end{bmatrix}
$$

Assume
$$
c^T \text{jac}(F) \Big|_A = 0
$$
 for some c
then $c^T \text{jac}(F) \Big|_A = p(A) + \widetilde{q(B)}$

Let $Y := p(A) + q(B)$ then $Y \circ A = 0$ and $Y \circ I = O$ and $[A, p(A)] + [A, q(B)] = [A, Y]$

Since $[A, p(A)] = O$,

$$
[A, Y] = [A, \widetilde{q(B)}] = \begin{bmatrix} * & * & \cdots & * \\ * & & & \\ \vdots & & & \\ * & & & \end{bmatrix}
$$

By Lemma $Y = Q$

Let
$$
X := p(A) = -\widetilde{q(B)}
$$

Let
$$
X := p(A) = -\widetilde{q(B)}
$$

By direct calculation $AX = XB$

Let $X := p(A) = -q(B)$ By direct calculation $AX = XB$ If $X \neq O$ then A, \tilde{B} have a common eigenvalue

Let $X := p(A) = -q(B)$ By direct calculation $AX = XB$ If $X \neq O$ then A, \tilde{B} have a common eigenvalue A has a zero eigenvalue where the corresponding eigenvector is a linear combination of the columns of X .

Let $X := p(A) = -q(B)$ By direct calculation $AX = XB$ If $X \neq O$ then A, \tilde{B} have a common eigenvalue A has a zero eigenvalue where the corresponding eigenvector is a linear combination of the columns of X . Similarly for \tilde{B} .

$$
\tilde{B}X_{.j} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = 0 \Rightarrow B \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix} = 0
$$

Let $X := p(A) = -q(B)$ By direct calculation $AX = XB$ If $X \neq O$ then A, \tilde{B} have a common eigenvalue A has a zero eigenvalue where the corresponding eigenvector is a linear combination of the columns of X . Similarly for \tilde{B} .

$$
\tilde{B}X_{.j} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & & & \\ \vdots & & B & \\ 0 & & & \end{bmatrix} \begin{bmatrix} 0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = 0 \Rightarrow B \begin{bmatrix} x_2 \\ \vdots \\ x_n \end{bmatrix} = 0
$$

So $X = O$, hence $c = O$. That is, $Jac(F)\Big|_{x}$ is invertible.

Theorem $x \in \mathbb{R}^s$, $y \in \mathbb{R}^r$ $\mathcal{F}:\mathbb{R}^{s+r}\to\mathbb{R}^s$: continuously differentiable on an open subset U of \mathbb{R}^{s+r}

$$
F(x, y) = (F_1(x, y), F_2(x, y), \ldots, F_s(x, y)),
$$

 $(a, b) \in U$ with $a \in \mathbb{R}^s$, $b \in \mathbb{R}^r$

 $c \in \mathbb{R}^s$ *such that* $F(a, b) = c$

 f *if* $\frac{\partial F_i}{\partial x_i}$ ∂*x^j* (*a*,*b*) 1 *is nonsingular, then there exist an open neighborhood V containing a and an open neighborhood W containing b such that* $V \times W \subseteq U$ and for each $y \in W$ there is *an x* ∈ *V with*

$$
F(x,y)=c
$$

Future Research
► Known: Any connected graph on *n* vertices realizes

 $\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n$.

► Known: Any connected graph on *n* vertices realizes

$\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n$.

\triangleright What about when the inequalities are not strict?

► Given a graph *G* and real numbers

$$
\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n,
$$

and

$$
\mu_1<\gamma_1<\mu_2<\cdots<\gamma_{n-2}<\mu_{n-1}
$$

Is there a matrix A with $G(A) = G$ and eigenvalues λ_i 's such that $A(1)$ has eigenvalues μ_i 's and $A(\{1,2\})$ has eigenvalues _{γi}'s?

► Given a graph *G* and real numbers

$$
\lambda_1 < \mu_1 < \lambda_2 < \cdots < \mu_{n-1} < \lambda_n,
$$

and

$$
\mu_1<\gamma_1<\mu_2<\cdots<\gamma_{n-2}<\mu_{n-1}
$$

Is there a matrix A with $G(A) = G$ and eigenvalues λ_i 's such that $A(1)$ has eigenvalues μ_i 's and $A(\{1,2\})$ has eigenvalues _{γi}'s?

 \triangleright What about when the inequalities are not strict?

► Known: Given numbers $\lambda_1 \leq \ldots \leq \lambda_n$ and $\mu_1 \leq \ldots \leq \mu_n$, with $\bm{a} = \sum \lambda_i - \sum \mu_i \geq 0$ then there exists a unique Jacobi matrix *T* satisfying $\sigma(T) = {\lambda_1, \ldots, \lambda_n}$ and $\sigma(T + aE_{11}) = {\mu_1, \ldots, \mu_n}$ if and only if $\lambda_1 < \mu_1 < \lambda_2 < \ldots < \lambda_n < \mu_n$

- ► Known: Given numbers $\lambda_1 \leq \ldots \leq \lambda_n$ and $\mu_1 \leq \ldots \leq \mu_n$, with $\bm{a} = \sum \lambda_i - \sum \mu_i \geq 0$ then there exists a unique Jacobi matrix *T* satisfying $\sigma(T) = {\lambda_1, \ldots, \lambda_n}$ and $\sigma(T + aE_{11}) = {\mu_1, \ldots, \mu_n}$ if and only if $\lambda_1 < \mu_1 < \lambda_2 < \ldots < \lambda_n < \mu_n$
- \triangleright What about trees and graphs instead of Jacobi matrices?

- **► Known: Given numbers** $\lambda_1 \leq \cdots \leq \lambda_n$ and $\alpha_1 \leq \cdots \leq \alpha_{i-1}$ and $\beta_1 \leq \cdots \leq \beta_{n-j},$ for $1 < j < n,$ then there exists a unique Jacobi matrix *T* such that
	- \blacktriangleright *T* has eigenvalues $\lambda_1, \ldots, \lambda_m$
	- \triangleright The leading $(j 1) \times (j 1)$ principal submatrix has eigenvalues $\alpha_1 < \cdots < \alpha_{i-1}$
	- **Figure 1.** The trailing $(n j) \times (n j)$ principal submatrix has eigenvalues $\beta_1 < \cdots < \beta_{n-i}$

if and only if

$$
\blacktriangleright \{\alpha_i\} \cap \{\beta_i\} = \emptyset
$$

 \triangleright for $\{\mu_1 \leq \cdots \leq \mu_n\} = \{\alpha_i\} \cup \{\beta_i\}$, we have $\lambda_1 < \mu_1 < \lambda_2 < \cdots < \lambda_n < \mu_n$

- **► Known: Given numbers** $\lambda_1 \leq \cdots \leq \lambda_n$ and $\alpha_1 \leq \cdots \leq \alpha_{i-1}$ and $\beta_1 \leq \cdots \leq \beta_{n-j},$ for $1 < j < n,$ then there exists a unique Jacobi matrix *T* such that
	- \blacktriangleright *T* has eigenvalues $\lambda_1, \ldots, \lambda_m$
	- \triangleright The leading $(j 1) \times (j 1)$ principal submatrix has eigenvalues $\alpha_1 < \cdots < \alpha_{i-1}$
	- **Figure 1.** The trailing $(n j) \times (n j)$ principal submatrix has eigenvalues $\beta_1 < \cdots < \beta_{n-i}$

if and only if

- \triangleright { α_i } ∩ { β_i } = Ø
- \triangleright for $\{\mu_1 \leq \cdots \leq \mu_n\} = \{\alpha_i\} \cup \{\beta_i\}$, we have $\lambda_1 < \mu_1 < \lambda_2 < \cdots < \lambda_n < \mu_n$
- \triangleright What about trees and graphs instead of Jacobi matrices?

Thank You!!