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Introduction



Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix ←→ spectrum

real symmetric ←→ real

A : with e-values λ1 ≤ · · · ≤ λn ←→ λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

B : principal sub-matrix of A (Cauchy interlacing inequalities)

with e-values µ1 ≤ · · · ≤ µn−1

etc.



Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix ←→ spectrum

real symmetric ←→ real

A : with e-values λ1 ≤ · · · ≤ λn ←→ λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

B : principal sub-matrix of A (Cauchy interlacing inequalities)

with e-values µ1 ≤ · · · ≤ µn−1

etc.



Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix ←→ spectrum

real symmetric ←→ real

A : with e-values λ1 ≤ · · · ≤ λn ←→ λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

B : principal sub-matrix of A (Cauchy interlacing inequalities)

with e-values µ1 ≤ · · · ≤ µn−1

etc.



Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix ←→ spectrum

real symmetric ←→ real

A : with e-values λ1 ≤ · · · ≤ λn ←→ λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

B : principal sub-matrix of A (Cauchy interlacing inequalities)

with e-values µ1 ≤ · · · ≤ µn−1

etc.



Combinatorial matrix theory

Spectral properties of a matrix (sub-matrix)

matrix ←→ spectrum

real symmetric ←→ real

A : with e-values λ1 ≤ · · · ≤ λn ←→ λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µn−1 ≤ λn

B : principal sub-matrix of A (Cauchy interlacing inequalities)

with e-values µ1 ≤ · · · ≤ µn−1

etc.



Graph of a matrix

An×n : real symmetric matrix
G(A) : a graph G on n vertices 1,2, . . . ,n
i ∼ j if and only if i 6= j and aij 6= 0

G(A) does not depend on the diagonal entries of A



1 1 0 0 1 −5 0 0 0 0
1 −2 2 0 0 0 1 0 0 0
0 2 0 3 0 0 0 1 0 0
0 0 3 0 −1 0 0 0 1 0
1 0 0 −1 1 0 0 0 0 1

−5 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0
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Question

I Given real numbers λ1, . . . , λn and a family F of symmetric
matrices, Does there exist a matrix A ∈ F with these
eigenvalues?

or equivalently

I Given a monic polynomial of degree n with n real roots,
and a family F of symmetric matrices, Does there exist a
matrix A ∈ F with this characteristic polynomial?

I Inverse Eigenvalue Problems
I IEP’s appear in various engineering contexts
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Applications

I control design
I system identification
I seismic tomography
I principal component analysis
I exploration and remote sensing
I antenna array processing
I geophysics
I molecular spectroscopy
I particle physics
I structure analysis
I circuit theory
I mechanical system simulation
I ...



Control System Design

A dynamic system:

System State x

u = K y + r

Input u Output y

Feedback System:

ẋ = Ax + BK y + Br
= (A + BK C)x + Br

y = Cx

Objectives

Choose K to:
1. assign eigenvalues / stabilize

(left half plane)
2. assign eigenvectors -

inputs/outputs
3. ensure robustness

(insensitivity to disturbances)
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ẋ = Ax + BK y + Br
= (A + BK C)x + Br

y = Cx

Objectives

Choose K to:
1. assign eigenvalues / stabilize

(left half plane)
2. assign eigenvectors -

inputs/outputs
3. ensure robustness

(insensitivity to disturbances)



Classification of inverse eigenvalue problems, Chu 98

“Perhaps the most focused
IEPs are structured prob-
lems, where a matrix with a
specified structure as well
as a designated spectrum
is sought after. A lot of
times this structure comes
from the adjacency matrix
of a graph.”



Motivation



Example of a fixed-free system
ki : Hooke’s law constants
mi : masses

Vibrations described with Newton’s law of motion:

mr ür = Fr + θr+1 − θr , r = 1,2, . . . ,n − 1

mnün = Fn − θn

By Hooke’s law:

θr = kr (ur − ur−1), r = 1,2, . . . ,n

u0 = 0

Altogether:
Mü + Ku = F

spectra



Example of a fixed-free system

Mü + Ku = F

K =



k0 + k1 −k1
−k1 k1 + k2 −k2

. . .
. . .

. . .

−kn−2 kn−2 + kn−1 −kn1
−kn−1 kn−1


= stiffness

I fixed and free?
I Fixed-Fixed, Free-Free
I IEP: Is there K such that λi are evalues of K ?
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Example of a fixed-free system

Jacobi matrix: a symmetric tridi-
agonal matrix K with negative off-
diagonal entries.

IEP: Is there a Jacobi matrix
such that eigenvalues of K are
λ1, . . . , λn and eigenvalues of K (1)
are µ1, . . . , µn−1?

⇒



Previous Results

Theorem (Gladwell 88)
For given {λi}ni=1 and {µi}n−1

i=1 there is a Jacobi matrix T with

σ(T ) = {λ1, . . . , λn}

and
σ(T (j)) = {µ1, . . . , µn−1}

if and only if

λ1 < µ1 < λ2 < · · · < µn−1 < λn.

Moreover such Jacobi matrix is unique.



Previous Results

We want: Not necessarily a Jacobi matrix

I (Duarte 79) Any tree on n vertices realizes

λ1 < µ1 < λ2 < . . . < µn−1 < λn.

I (New result) Any connected graph on n vertices realizes

λ1 < µ1 < λ2 < . . . < µn−1 < λn.
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Previous Results

Theorem (Duarte 79)
T : a tree with vertices 1,2, . . . , n
i : a vertex of T
λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn : real numbers

Then there is a (real) symmetric matrix A with graph T and
eigenvalues λ1, . . . , λn such that A(i) has eigenvalues
µ1, . . . , µn−1

Proof: By induction on the number of vertices.

I For k = 2

A =

[
µ1 x
x y

]
, y = λ1 + λ2 − µ1, x =

√
(λ2 − µ1)(µ1 − λ1)
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Previous Results
I Suppose for any k < n there is a matrix B with the desired

graph and spectral data.

I For k = n, assume T (i) has m connected components
Tj(i), (1 ≤ j ≤ m).

I By induction hypothesis there is Bj with G(Bj) = Tj(i). Let
gj be the characteristic polynomial of Bj .

I Define:
f (λ) := (λ− λ1)(λ− λ2) · · · (λ− λn)

g(λ) := g1(λ)g2(λ) · · · gm(λ)

I Partial Fraction Decomposition:

I ∃! a, and positive y1, y1, . . . , ym

I ∃! monic polynomials h1,h2, . . . ,hm, with deg(hj ) < deg(gj ) such
that

f (λ)
g(λ)

= (λ− a)−
m∑

j=1

yj
hj(λ)

gj(λ)

I Furthermore, roots of hj strictly interlace the roots of gj
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Previous Results

A =
i throw−−−→

i th col ↓

. . . . .
.

Bj1 O
√yj1√yj1 a √yj2

O √yj2 Bj2

. .
. . . .


I One can show that A realizes the given spectral data.



Example

1

2 3

λ : −10 0 2
µ : −1 1
i : 10 1 1

1 0 0
1 0 0

 diagonals−−−−→ M =

x1 x4 x5
x4 x2 0
x5 0 x3

 ,M(1) =
[
x2 0
0 x3

]

x2 = −1, x3 = 1
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Example

f (λ) = (λ+ 10)(λ)(λ− 2) = λ3 + 8λ2 − 20λ

g(λ) = g1(λ)g2(λ) = (λ+ 1)(λ− 1) = λ2 − 1

f (λ)
g(λ)

= (λ− (−8))−
(

27
2 (

1
λ+ 1

) + 11
2 (

1
λ− 1

)

)

x1 = −8, x4 =
√

27
2 , x5 =

√
11
2

A =


−8

√
27
2

√
11
2√

27
2 −1 0√

11
2 0 1
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The big picture

γ1, γ2 γ3, γ4, γ5

µ1, µ2, µ3 µ4, µ5
µ6, µ7

λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8



Aλ1,...,λ8
Aµ1,...,µ3

Aγ1,γ2
O

O

Aµ4,...,µ7

Aγ3,...,γ5





Main
Result



Main Result

Theorem
G : a connected graph with vertices 1,2, . . . , n
i : a vertex of G
λ1 < µ1 < λ2 < µ2 < · · · < µn−1 < λn : real numbers

Then there is a (real) symmetric matrix A with graph G and
eigenvalues λ1, . . . , λn such that A(i) has eigenvalues
µ1, . . . , µn−1

Proof:

I G is connected, then G has a spanning tree T
I (Duarte) T realizes λ’s and µ’s→ A,B := A(i)
I A has the Duarte property w.r.t to i , that is A is “generic”
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The Duarte Property

Consider the tree T :

γ3 γ4 γ5

µ4, µ5, µ6, µ7

λ1, . . . , λ8

1

2 3

4 5 6 7 8

T3(1)

(T3(1))(3)

T (1)

e-values of A(1) strictly interlace

those of A, and A2(1) and A3(1)

have the Duarte property

γs strictly interlace µs

µs strictly interlace λs

So A has the Duarte property w.r.t. 1



Main Result

I Consider the following matrix with its graph
and nonzero entry of A at ik , jk by xn+k , k = 1, 2, . . . , n − 1

and rest of the nonzero entries at ik , jk position of
the matrix of G by yk , k = 1, 2, . . . , m − n + 1 this gives M, and
N := M(i)
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3 4

5
6

7

8 9

10
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0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
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Main Result

I Choose a spanning tree of the graph
and nonzero entry of A at ik , jk by xn+k , k = 1, 2, . . . , n − 1
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I Substitute the diagonal entries by 2xk , k = 1, 2, . . . , n

and nonzero entry of A at ik , jk by xn+k , k = 1, 2, . . . , n − 1

and rest of the nonzero entries at ik , jk position of
the matrix of G by yk , k = 1, 2, . . . , m − n + 1 this gives M, and
N := M(i)
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Main Result

I Substitute the diagonal entries by xk , k = 1, 2, . . . , n

and nonzero entry of A at ik , jk by xn+k , k = 1, 2, . . . , n − 1

and rest of the nonzero entries at ik , jk position of
the matrix of G by yk , k = 1, 2, . . . , m − n + 1 this gives M, and
N := M(i)
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2
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5
6

7

8 9

10
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x11 2x2 x14 0 0 0 x15 0 0 0
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Main Result

I Substitute the diagonal entries by xk , k = 1, 2, . . . , n

and nonzero entry of A at ik , jk by xn+k , k = 1, 2, . . . , n − 1

and rest of the nonzero entries at ik , jk position of
the matrix of G by yk , k = 1, 2, . . . , m − n + 1 this gives M, and
N := M(i)

1

2

3 4

5
6

7

8 9

10



2x1 x11 0 0 x12 x13 0 0 0 0
x11 2x2 x14 0 0 0 x15 0 0 0
0 x14 2x3 y1 0 0 0 y2 0 0
0 0 y1 2x4 x16 0 0 0 y3 0

x12 0 0 x16 2x5 0 0 0 0 x17
x13 0 0 0 0 2x6 0 x18 x19 0
0 x15 0 0 0 0 2x7 0 y4 y5
0 0 y2 0 0 x18 0 2x8 0 y6
0 0 0 y3 0 x19 y4 0 2x9 0
0 0 0 0 x17 0 y5 y6 0 2x10





Main Result

I Let x := (x1, . . . , x2n−1), y := (y1, . . . , ym−n+1)

I g : Rm+n → R2n−1

g(x , y) := (c0, c1, . . . , cn−1,d0,d1, . . . ,dn−2)

ci : nonleading coeff’s of the characteristic polynomial of M
di : nonleading coeff’s of the characteristic polynomial of N

I f (x , y) :=
(
tr M, tr M2, . . . , tr Mn, tr N, tr N2, . . . , tr Nn−1)

I Newton’s identities imply f is obtained from g by an invertible change of

variables, i.e. Jac(g)
A

is nonsingular iff Jac(f )
A

is nonsingular

I F (x) := f (x ,0). Then Jac(f )
A

is nonsingular if Jac(F )
A
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Main Result

Jac(F )

A

= 2 ∗



Ii1 j1
· · · Iin−1 jn−1

I11 · · · Inn

2Ai1 j1
· · · 2Ain−1 jn−1

2A11 · · · 2Ann
...

. . .
...

...
. . .

...

nAn−1
i1 j1

· · · nAn−1
in−1 jn−1

nAn−1
11 · · · nAn−1

nn

Ĩi1 j1
· · · Ĩin−1 jn−1

Ĩ11 · · · Ĩnn

2B̃i1 j1
· · · 2B̃in−1 jn−1

2B̃11 · · · 2B̃nn
...

. . .
...

...
. . .

...

(n − 1)B̃n−2
i1 j1

· · · (n − 1)B̃n−2
in−1 jn−1

(n − 1)B̃n−2
11 · · · (n − 1)B̃n−2

nn



B̃ =


0 0 · · · 0
0
... B
0
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Main Result

I (Implicit Function Theorem) xi ’s can be described as
continuous functions of yi ’s in a neighbourhood of A

I so changing each yi to some εi one can find x̂i such that

g(x̂1, . . . , x̂2n−1, ε1 . . . , εm−n+1) = (c0, . . . , cn−1, d0, . . . , dn−2)
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1

2 3

1

2 3

⇐

A =


−8

√
27
2

√
11
2√

27
2 −1 0√

11
2 0 1

 ⇒ M =

2x1 x4 x5
x4 2x2 y1
x5 y1 2x3

 ,N =

[
2x2 y1
y1 2x3

]

Then

F (x1, . . . , x5,0) =(2(x1 + x2 + x3),4 x1
2 + 2 x4

2 + 2 x5
2 + 4 x2

2 + 4 x3
2,

8 x1
3 + 6 x1x4

2 + 6 x1x5
2 + 6 x4

2x2 + 6 x5
2x3 + 8 x2

3 + 8 x3
3,

2(x2 + x3),4 (x2
2 + x2

3 ))



Example

1

2 3

1

2 3

⇐

A =


−8

√
27
2

√
11
2√

27
2 −1 0√

11
2 0 1



⇒ M =

2x1 x4 x5
x4 2x2 y1
x5 y1 2x3

 ,N =

[
2x2 y1
y1 2x3

]

Then

F (x1, . . . , x5,0) =(2(x1 + x2 + x3),4 x1
2 + 2 x4

2 + 2 x5
2 + 4 x2

2 + 4 x3
2,

8 x1
3 + 6 x1x4

2 + 6 x1x5
2 + 6 x4

2x2 + 6 x5
2x3 + 8 x2

3 + 8 x3
3,

2(x2 + x3),4 (x2
2 + x2

3 ))



Example

1

2 3

1

2 3

⇐

A =


−8

√
27
2

√
11
2√

27
2 −1 0√

11
2 0 1

 ⇒ M =

2x1 x4 x5
x4 2x2 y1
x5 y1 2x3

 ,N =

[
2x2 y1
y1 2x3

]

Then

F (x1, . . . , x5,0) =(2(x1 + x2 + x3),4 x1
2 + 2 x4

2 + 2 x5
2 + 4 x2

2 + 4 x3
2,

8 x1
3 + 6 x1x4

2 + 6 x1x5
2 + 6 x4

2x2 + 6 x5
2x3 + 8 x2

3 + 8 x3
3,

2(x2 + x3),4 (x2
2 + x2

3 ))



Example

1

2 3

1

2 3

⇐

A =


−8

√
27
2

√
11
2√

27
2 −1 0√

11
2 0 1

 ⇒ M =

2x1 x4 x5
x4 2x2 y1
x5 y1 2x3

 ,N =

[
2x2 y1
y1 2x3

]

Then

F (x1, . . . , x5,0) =(2(x1 + x2 + x3),4 x1
2 + 2 x4

2 + 2 x5
2 + 4 x2

2 + 4 x3
2,

8 x1
3 + 6 x1x4

2 + 6 x1x5
2 + 6 x4

2x2 + 6 x5
2x3 + 8 x2

3 + 8 x3
3,

2(x2 + x3),4 (x2
2 + x2

3 ))



Example

Jac(F ) =


2 2 2 0 0

8x1 8x2 8x3 4x4 4x5

24x2
1 + 6x2

4 + 6x2
5 24x2

2 + 6x2
4 + 6x2

5 24x2
3 + 6x2

5 12x1x4 + 12x2x4 12x1x5 + 12x3x5

0 2 2 0 0
0 8x2 8x3 0 0



det(Jac(f )) = 1536 x4x5x3
2 − 3072 x4x5x3x2 + 1536 x5x4x2

2 → (no x1)

det(Jac(f )
A
) = 4608

√
132
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Example

Let y1 =
√

3
2 , then

M̂ =


−8 9+

√
11

2
√

2

√
66−3

√
6

4
9+
√

11
2
√

2
−1

2

√
3

2√
66−3

√
6

4

√
3

2
1
2

 eigenvalues
−−−−−−−−−→ −10,0,2

N̂ =

[
−1

2

√
3

2√
3

2
1
2

]
eigenvalues
−−−−−−−−−→ −1,1



Example

Or let y1 = 0.1, then

M̂ ≈

 −8 −3.552219778 2.526209542
−3.552219778 −0.9949874371 0.1
2.526209542 0.1 0.99498743710


eigenvalues
−−−−−−−−−→ −9.999999999,−1.342005956 · 10−15,1.999999999

N̂ ≈
[
−0.9949874371 0.1

0.1 0.99498743710

]
eigenvalues
−−−−−−−−−→ −1,1



Some
Additional

Details



Newton’s Identities
Let

pk (x1, . . . , xn) =
∑n

i=1
xk

i = xk
1 + · · ·+ xk

n

and

e0(x1, . . . , xn) = 1,
e1(x1, . . . , xn) = x1 + x2 + · · ·+ xn,

e2(x1, . . . , xn) =
∑

1≤i<j≤n xixj ,

en(x1, . . . , xn) = x1x2 · · · xn,

ek (x1, . . . , xn) = 0, for k > n.

Then

kek (x1, . . . , xn) =
k∑

i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn)



Newton’s Identities
Consider the characteristic polynomial of A:

n∏
i=1

(t − xi) =
n∑

k=0

(−1)kak tn−k

and

sk = pk (x1, . . . , xn) =
n∑

i=1

xk
i

Then

s1 = a1,

s2 = a1s1 − 2a2,

s3 = a1s2 − a2s1 + 3a3,

s4 = a1s3 − a2s2 + a3s1 − 4a4,

...

and sk = tr Ak . So trA, . . . , trAn uniquely determine the
coefficients of the characteristic polynomial of A.



Jacobian

Lemma
Let (i , j) be a nonzero position of M with corresponding variable
xt . Then

(a)
∂

∂xt

(
tr Mk

)
= 2kMk−1

ij

(b)
∂

∂xt

(
tr Nk

)
=

{
2kNk−1

ij ; if i , j 6= n
0 ; o.w

= 2kN̂k−1
ij

proof:
If i 6= j

∂

∂xt
M = Eij + Eji ,

If i = j
∂

∂xt
M = 2Eii = Eij + Eji .
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(
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(
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=

{
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ij

proof:
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∂
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M = Eij + Eji ,

If i = j
∂

∂xt
M = 2Eii = Eij + Eji .



Jacobian

in either case

∂

∂xt

(
tr(Mk )

)
=

k−1∑
l=0

tr
(

M l ·
∂

∂xt
M ·Mk−l−1

)
(by the chain rule)

=

k−1∑
l=0

tr
(

Mk−1 ·
∂

∂t
M
)

(since tr(AB) = tr(BA) for any A and B)

= k tr
(

Mk−1(Eij + Eji )
)

= k
(
(Mk−1)ij + (Mk−1)ji

)
= 2k(Mk−1)ij . (since M is symmetric)



Jacobian

Corollary

Jac(F )

A

= 2 ∗



Ii1 j1
· · · Iin−1 jn−1

I11 · · · Inn

2Ai1 j1
· · · 2Ain−1 jn−1

2A11 · · · 2Ann
...

. . .
...

...
. . .

...

nAn−1
i1 j1

· · · nAn−1
in−1 jn−1

nAn−1
11 · · · nAn−1

nn

Ĩi1 j1
· · · Ĩin−1 jn−1

Ĩ11 · · · Ĩnn

2B̃i1 j1
· · · 2B̃in−1 jn−1

2B̃11 · · · 2B̃nn
...

. . .
...

...
. . .

...

(n − 1)B̃n−2
i1 j1

· · · (n − 1)B̃n−2
in−1 jn−1

(n − 1)B̃n−2
11 · · · (n − 1)B̃n−2

nn





Jacobian

Lemma
Let A have the Duarte property with respect to the vertex 1,
G(A) be a tree T , and X be a symmetric matrix such that

1. I ◦ X = O,
2. A ◦ X = O,
3. [A,X ](1) = O.

then X = O.



Jacobian

Assume cT jac(F )
A
= 0 for some c

then cT jac(F )
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The Implicit Function Theorem

Theorem
x ∈ Rs, y ∈ Rr

F : Rs+r → Rs : continuously differentiable on an open subset U of Rs+r

F (x , y) = (F1(x , y),F2(x , y), . . . ,Fs(x , y)),

(a,b) ∈ U with a ∈ Rs, b ∈ Rr

c ∈ Rs such that F (a,b) = c

If

[
∂Fi
∂xj

(a,b)

]
is nonsingular, then there exist an open

neighborhood V containing a and an open neighborhood W
containing b such that V ×W ⊆ U and for each y ∈W there is
an x ∈ V with

F (x , y) = c
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Thank You!!
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