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Permanent Examples

How many perfect matchings are in a bipartite graph?
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Permanent Definition

Definition

The permanent of a matrix A =
[
aij
]

n×n is:

The sum of all diagonal products of A

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i).

No easy∗ geometric interpretation
Appears naturally in many combinatorial settings

∗ such as the volume of a parallelepiped
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Permanent rank Examples

What is the greatest matching in a bipartite graph?
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Permanent rank Definition

Definition
The perrank of a matrix A is the size of a largest sub-matrix of A with
nonzero permanent
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Permanent rank Yu’s conjecture

Yu’s results

perrank(A) is at least half of the rank(A)

For an invertible matrix A over a characteristic 3 field:

perrank(A) = perrank(A−1)

For full matrices A,B over a characteristic zero field F:

perrank
(

A B
)
= n
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Permanent rank Yu’s conjecture

Yu’s conjecture (The Permanent conjecture)

Conjecture
For an invertible matrix A:

perrank
(

A A
)
= n
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Permanent rank AJT conjecture

AJT conjecture

Conjecture
F : a field with at least 4 elements

A : a nonsingular matrix over F
⇒ There is a vector x such that both x and Ax have only nonzero
entries.


A1
A2
...

An




x1
x2
...

xn

 =


y1
y2
...

yn


∏

xi
∏

yi 6= 0

⇒
∏

xi
∏

Aix 6= 0
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Permanent rank AJT conjecture

(Alon-Tarsi) The conjecture is true for non-prime order fields.

(Akbari, M, et.al.) Every nonzero matrix is similar to an AJT-Matrix.

The permanent conjecture implies the AJT conjecture.

xi ∈ {1,2}
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Permanent rank perrank and termrank

Term rank of a matrix

The maximum number of the nonzero entries on diagonals of a
matrix.

The minimum number of rows and columns that cover all the
nonzero entries of the matrix.

0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1


⇒



0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1


termrank(A) = 4
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Permanent rank perrank and termrank

perrank-termrank

Conjecture (B.L.S.)

perrank(A) ≥

⌈
termrank(A)

2

⌉

For even termrank the equality holds iff

A '
⊕[

1 1
1 −1

]
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Permanent rank perrank and termrank

Questions

Characterizing all matrices of perrank k

AJT conjecture is true over F5

Converting computing the permanent of an n × n matrix to
computing the determinant of a matrix of polynomial size in n.
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