On the permanent rank of matrices

Keivan Hassani Monfared

University of Wyoming

Rocky Mountain Discrete Mathematics Days, October 21-22, 2011

Keivan Hassani Monfared (UWYO)

On the permanent rank of matrices

Outline

Permanent

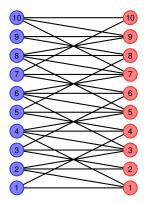
- Examples
- Definition

Permanent rank

- Examples
- Definition
- Yu's conjecture
- AJT conjecture
- perrank and termrank

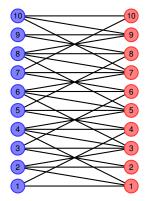
Examples

How many perfect matchings are in a bipartite graph?



Examples

How many perfect matchings are in a bipartite graph?

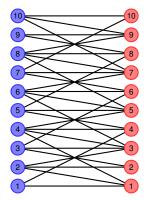


Γ	1	0	0	1						٦
	1	1	1	0						
	0	1	1	-	0	1				
	1	0	1	1	1	0				
			0	1	1	0	0	1		
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L							1	0	1	1]

Keivan Hassani Monfared (UWYO)

Examples

How many perfect matchings are in a bipartite graph?



Γ	1	0	0	1						7
	1	1	1	0						
-	0	1	1	0	0	1				
	1	0	1	1	1	0				
-			0	1	1	0	0	1		
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L							1	0	1	1

per(A) = 95

The permanent of a matrix $A = [a_{ij}]_{n \times n}$ is:

The permanent of a matrix $A = [a_{ij}]_{n \times n}$ is:

The sum of all diagonal products of A

The permanent of a matrix $A = [a_{ij}]_{n \times n}$ is:

The sum of all diagonal products of A

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}.$$

The permanent of a matrix $A = [a_{ij}]_{n \times n}$ is:

The sum of all diagonal products of A

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}.$$

No easy* geometric interpretation

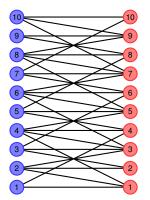
* such as the volume of a parallelepiped

The permanent of a matrix $A = [a_{ij}]_{n \times n}$ is:

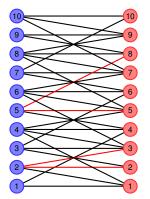
The sum of all diagonal products of A

$$\operatorname{per}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i\sigma(i)}.$$

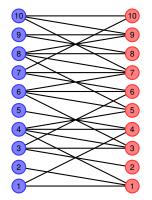
- No easy* geometric interpretation
- Appears naturally in many combinatorial settings
 - * such as the volume of a parallelepiped



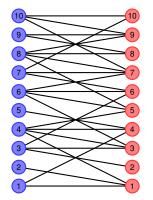
Γ	1	0	0	1						٦
	1	1	1	0						
	0	1	1	0	0	1				ļ
	1	0	1	1	1	0				ļ
			0	1	1	0	0	1		İ
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L							1	0	1	1]

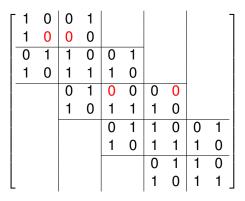


Г	1	0	0	1						٦
	1	1	1	0						
_	0	1	1	0	0	1				
	1	0	1	1	1	0				
-			0	1	1	0	0	1		
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L							1	0	1	1]

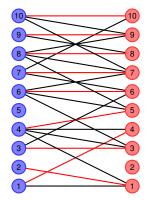


Γ	1	0	0	1						٦
	1	0	0	0						
	0	1	1	0	0	1				
	1	0	1	1	1	0				
			0	1	0	0	0	0		
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L	-						1	0	1	1]

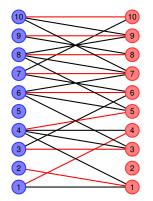


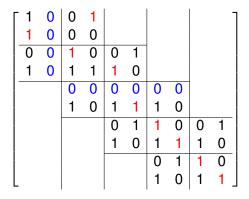


per(A) = 0



Γ	1	0	0	1						٦
	1	0		0						
	0	0	1			1				
	1	0	1	1	1	0				
			0	0	0	0	0	0		
			1	0	1	1	1	0		
					0	1	1	0	0	1
					1	0	1	1	1	0
							0	1	1	0
L							1	0	1	1





per(A') = 18

The perrank of a matrix A is the size of a largest sub-matrix of A with nonzero permanent

Yu's results

perrank(A) is at least half of the rank(A)

Yu's results

- perrank(A) is at least half of the rank(A)
- For an invertible matrix A over a characteristic 3 field:

$$perrank(A) = perrank(A^{-1})$$

Yu's results

- perrank(A) is at least half of the rank(A)
- For an invertible matrix A over a characteristic 3 field:

$$perrank(A) = perrank(A^{-1})$$

• For full matrices A, B over a characteristic zero field \mathbb{F} :

perrank
$$(A \mid B) = n$$

Yu's conjecture (The Permanent conjecture)

Conjecture

For an invertible matrix A:

perrank $(A \mid A) = n$

Keivan Hassani Monfared (UWYO)

Conjecture

 \mathbb{F} : a field with at least 4 elements

Conjecture

- \mathbb{F} : a field with at least 4 elements
- A : a nonsingular matrix over \mathbb{F}

Conjecture

- \mathbb{F} : a field with at least 4 elements
- A : a nonsingular matrix over \mathbb{F}

 \Rightarrow There is a vector x such that both x and Ax have only nonzero entries.

Conjecture

- \mathbb{F} : a field with at least 4 elements
- A : a nonsingular matrix over \mathbb{F}

 \Rightarrow There is a vector x such that both x and Ax have only nonzero entries.

$$\begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$\prod x_i \prod y_i \neq 0$$

Conjecture

- \mathbb{F} : a field with at least 4 elements
- A : a nonsingular matrix over \mathbb{F}

 \Rightarrow There is a vector x such that both x and Ax have only nonzero entries.

$$\begin{bmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{n} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$
$$\prod x_{i} \prod y_{i} \neq 0$$
$$\Rightarrow \prod x_{i} \prod A_{i} x \neq 0$$

• (Alon-Tarsi) The conjecture is true for non-prime order fields.

- (Alon-Tarsi) The conjecture is true for non-prime order fields.
- (Akbari, M, et.al.) Every nonzero matrix is similar to an AJT-Matrix.

- (Alon-Tarsi) The conjecture is true for non-prime order fields.
- (Akbari, M, et.al.) Every nonzero matrix is similar to an AJT-Matrix.
- The permanent conjecture implies the AJT conjecture.

- (Alon-Tarsi) The conjecture is true for non-prime order fields.
- (Akbari, M, et.al.) Every nonzero matrix is similar to an AJT-Matrix.
- The permanent conjecture implies the AJT conjecture.

 $x_i \in \{1,2\}$

perrank and termrank

Term rank of a matrix

The maximum number of the nonzero entries on diagonals of a matrix.

- The maximum number of the nonzero entries on diagonals of a matrix.
- The minimum number of rows and columns that cover all the nonzero entries of the matrix.

- The maximum number of the nonzero entries on diagonals of a matrix.
- The minimum number of rows and columns that cover all the nonzero entries of the matrix.

Г	0	0	0	1	0	0	0	0	0	ך 0
	0	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0
	1	1	1	0	1	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	0	1	1
	0	0	0	0	0	0	0	0	0	1
	0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1
L	0	0	0	1	0	0	0	0	0	1]

- The maximum number of the nonzero entries on diagonals of a matrix.
- The minimum number of rows and columns that cover all the nonzero entries of the matrix.

Г	0	0	0	1	0	0	0	0	0	0 7		Γ0	0	0	1	0	0	0	0	0	0 J
	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	1	1	1	0	1	0	0	1	0	1		1	1	1	0	1	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	0	1	1	\Rightarrow	0	0	1	1	1	1	1	0	1	1
	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0	1
I	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0	1
L	0	0	0	1	0	0	0	0	0	1 _		Lο	0	0	1	0	0	0	0	0	1

- The maximum number of the nonzero entries on diagonals of a matrix.
- The minimum number of rows and columns that cover all the nonzero entries of the matrix.

Г	0	0	0	1	0	0	0	0	0	0 7		Γ0	0	0	1	0	0	0	0	0	0 J
	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	1	1	1	0	1	0	0	1	0	1		1	1	1	0	1	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	0	0	1	1	1	1	1	0	1	1	\Rightarrow	0	0	1	1	1	1	1	0	1	1
	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0	1
	0	0	0	1	0	0	0	0	0	0		0	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0	1
L	0	0	0	1	0	0	0	0	0	1 _		Lο	0	0	1	0	0	0	0	0	1

termrank(A) = 4

perrank and termrank

Term rank of a matrix

- The maximum number of the nonzero entries on diagonals of a matrix.
- The minimum number of rows and columns that cover all the nonzero entries of the matrix.

0 Λ

termrank(A) = 4

perrank-termrank

Conjecture (B.L.S.)

$$\mathsf{perrank}(A) \ge \left\lceil \frac{\mathsf{termrank}(A)}{2} \right\rceil$$

Keivan Hassani Monfared (UWYO)

Conjecture (B.L.S.)

$$\mathsf{perrank}(A) \ge \left\lceil \frac{\mathsf{termrank}(A)}{2} \right\rceil$$

For even termrank the equality holds iff

$$A \simeq \bigoplus \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

Keivan Hassani Monfared (UWYO)

Questions

• Characterizing all matrices of perrank k

Questions

- Characterizing all matrices of perrank k
- AJT conjecture is true over \mathbb{F}_5

Questions

- Characterizing all matrices of perrank k
- AJT conjecture is true over 𝑘₅
- Converting computing the permanent of an n × n matrix to computing the determinant of a matrix of polynomial size in n.

• Thank you.

Thank you.Questions?