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Clustering problem (informal definition)

𝐶𝐶1 𝐶𝐶2

𝑎𝑎1
(intra-)

𝐶𝐶𝑘𝑘

𝑒𝑒1
(inter-)

Find a partitioning 𝐶𝐶 = 𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑘𝑘 of the 
vertices of the graph so that:

1. Most of the positive edges are inside the 
partitions (intra-edges), and

2. Most of the negative edges are between the 
partitions (inter-edges).



Clustering problem (formal definition)

𝐶𝐶1 𝐶𝐶2

𝑎𝑎1
(intra-)

𝐶𝐶𝑘𝑘

𝑒𝑒1
(inter-)

Girvan-Newman modularity for a given clustering 𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑘𝑘
is defined by:

𝑄𝑄 = �
𝑖𝑖=1

𝑘𝑘

𝑎𝑎𝑖𝑖 − 𝑒𝑒𝑖𝑖2

ratio of edges
inside cluster 𝑖𝑖

ratio of edges between 
cluster 𝑖𝑖 and other clusters

For signed graphs: 

𝑄𝑄𝑠𝑠 =
𝑚𝑚+𝑄𝑄+ −𝑚𝑚−𝑄𝑄−

𝑚𝑚+ + 𝑚𝑚−

modularity of
positive edges

modularity of
negative edges

number of
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[Girvan, Newman, Physical Review, 2004]



Clustering problem (formal definition)

𝐶𝐶1 𝐶𝐶2

𝑎𝑎1
(intra-)

𝐶𝐶𝑘𝑘

𝑒𝑒1
(inter-)

𝑄𝑄𝑠𝑠 =
𝑚𝑚+𝑄𝑄+ −𝑚𝑚−𝑄𝑄−

𝑚𝑚+ + 𝑚𝑚−

−2 ≤ Qs ≤ 2

• clear communities
• highly correlated 

intra-community interactions
• highly anti-correlated 

inter-community interactions

• no real communities
• highly anti-correlated

intra-community interactions
• highly correlated 

inter-community interactions

Find a partitioning 𝐶𝐶 = 𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑘𝑘 of the 
vertices of the graph so that 𝑄𝑄𝑠𝑠 is maximized.

As good as random
 

or no clustering



Method 1: Hierarchical Fiedler

1. Compute an eigenvector of the 
second smallest eigenvalue of the 
Laplacian matrix of the graph (the 
Fiedler vector)

2. Partition the vertices into two sets 
according to the sign of the 
corresponding entry in the Fiedler 
eigenvector

3. Repeat steps 1 and 2 for the partition 
with the smallest second eigenvalue 
of the Laplacian (smallest algebraic 
connectivity)

[ Fiedler, Czech. Math. J. 1975 ]
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Method 1: Hierarchical Fiedler (outline)

1. Compute an eigenvector of the 
second smallest eigenvalue of the 
Laplacian matrix of the graph (the 
Fiedler vector)

2. Partition the vertices into two sets 
according to the sign of the 
corresponding entry in the Fiedler 
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3. Repeat steps 1 and 2 for the partition 
with the smallest second eigenvalue 
of the Laplacian (smallest algebraic 
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Method 1: Hierarchical Fiedler (When to stop)



Method 2: Spectral Coordinates

𝒙𝒙𝒊𝒊: eigenvector corresponding to 𝑖𝑖-th largest 
eigenvalue of the adjacency matrix of the graph
𝒌𝒌: number of desired clusters
𝜶𝜶𝒖𝒖: spectral coordinates of node 𝑢𝑢

[Wu, Wu, Lu, Li,  IEEE Trans Knowledge Data Eng, 2017]



Method 2: Spectral Coordinates

𝒙𝒙𝒊𝒊: eigenvector corresponding to 𝑖𝑖-th largest 
eigenvalue of the adjacency matrix of the graph
𝒌𝒌: number of desired clusters
𝜶𝜶𝒖𝒖: spectral coordinates of node 𝑢𝑢

[Wu, Wu, Lu, Li,  IEEE Trans Knowledge Data Eng, 2017]

• spectral coordinates of the nodes in the 
same communities tend to cluster together.

• Use a clustering algorithm, such as k-means 
to identify the nodes in the same clusters 
with various k.

• Choose the clustering with maximum signed 
modularity.



Results

One signal:

Clusters from Hierarchical Fiedler method:

Clusters from Spectral Coordinates method:

Signed modularity of both clusterings:

seizure onset
becomes hypoxic

recovers from hypoxia
becomes normoxic
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Thank you!
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