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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING
SYSTEMS*

KEIVAN HASSANI MONFARED AND PETER LANCASTER}

Abstract. The two main approaches to problems of noise, vibration, and harshness in the auto-
motive industry are (a) structural modification by passive elements and (b) active control. They both
lead to inverse quadratic eigenvalue problems in which the coefficient matrices are real-symmetric
and satisfy given connectivity conditions. In this paper we show that a ‘generic’ problem of this sort
always has a solution. More generally, we show the existence of a solution for a structured inverse
spectral problem for polynomials of any given degree, and then apply the results to the quadratic
case.

In particular, let A = {A1,A2,...,A\qx} be a set of nk distinct real numbers and let Go, Gi,
..., Gk_1 be k graphs on n nodes. It is shown that there are k + 1 real symmetric n X n matrices
Ao, ..., Ay, such that the matrix polynomial A(z) := ApzF 4+ --. 4+ A;z + Ap has the following
properties: (a) the spectrum of A(z) is A, (b) the graph of As is G5 for s =0,1,...,k — 1 and, (¢)
Ay is an arbitrary positive definite diagonal matrix. Moreover, it is shown that, for any given sets
of graphs and spectra of this kind, there are infinitely many such solution sets Ag,..., Ax . When
k = 2, this solves a physically significant inverse eigenvalue problem for linked vibrating systems (see
Section 2 and Corollary 5.3).

Key words. Quadratic Eigenvalue Problem, Inverse Spectrum Problem, Structured Vibrating
System, Jacobian Method, Perturbation, Graph

AMS subject classifications. 05C50, 15A18, 15A29, 65F10, 65F18

1. Introduction. Inverse eigenvalue problems are of interest in both theory and
applications. See, for example, the book of Gladwell [15] for applications in mechanics,
the review article by Chu and Golub [8] for linear problems, the monograph by Chu
and Golub [9] for general theory, algorithms and applications, and many references
collected from various disciplines. In particular, the Quadratic Inverse Figenvalue
Problems (QIEP) are important and challenging because the general techniques for
solving linear inverse eigenvalue problems cannot be applied directly. We empha-
size that the structure, or linkage, imposed here is a feature of the physical systems
illustrated in Section 2, and “linked” systems of this kind (imposing zero/nonzero
conditions on some entries of A(z)) are our main concern.

Although the QIEP is important, the theory is presented here in the context
of higher degree inverse spectral problems, and this introduction serves to set the
scene and provide motivation for the more general theory developed in the main
body of the paper — starting with Section 3. The techniques used here generate
systems with entirely real spectrum and perturbations which preserve this property.
The method could be generalized to admit non-real conjugate pairs in the spectrum
and the associated oscillatory behaviour. For example, the linear inverse eigenvalue
problem admitting conjugate pairs of eigenvalues is solved in [17]. However, there
may be some physical advantage in ensuring no oscillatory solutions by restricting
attention to entirely real spectrum.

QIEPs appear repeatedly in various scientific areas including structural mechan-
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2 K. HASSANI MONFARED AND P. LANCASTER

ics, acoustic systems, electrical oscillations, fluid mechanics, signal processing, and
finite element discretisation of partial differential equations. In general, properties of
the underlying physical system determine the matrix coefficients, while the behaviour
of the system can be interpreted in terms of associated eigenvalues and eigenvectors.
See Sections 5.3 and 5.4 of [9], where symmetric QIEPs are discussed.

Indeed, two important variations of such quadratic inverse eigenvalue problems
arise in active vibration control (AVC) and finite element model updating (FEMU) in
mechanical vibration [12]. There are also important applications of model updating
in damage detection and health monitoring in vibrating structures [10]. Furthermore,
authors of [25] formulate quadratic inverse eigenvalue problems for the solution of
vibration absorption problems in the automotive industry:

“...in the automotive industry the resolution of noise, vibration
and harshness (NVH) problems is of extreme importance to customer
satisfaction. In rotorcraft it is vital to avoid resonance close to the
blade passing speed and its harmonics. An objective of the great-
est importance, and extremely difficult to achieve, is the isolation of
the pilot’s seat in a helicopter. It is presently impossible to achieve
the objectives of vibration absorption in these industries at the design
stage because of limitations inherent in finite element models. There-
fore, it is necessary to develop techniques whereby the dynamic of the
system (possibly a car or a helicopter) can be adjusted after it has
been built. There are two main approaches: structural modification
by passive elements and active control.”

In this article it will be convenient to distinguish an eigenvalue of a matrix from
a zero of the determinant of a matrix-valued function, which we call a proper value.
(Thus, an eigenvalue of matrix A is a proper value of Iz — A.) Given a quadratic
matrix polynomial

(1.1) L(z)=Mz* + Dz + K, M,D,K € R"*",

the direct problem is to find scalars zy and nonzero vectors' x € C™ satisfying
L(z9)x = 0. The scalars zp and the vectors @ are, respectively, proper values and
proper vectors of the quadratic matrix polynomial L(z).

A broad survey of theory, applications, and a variety of numerical techniques
for the direct quadratic problem appears in [28]. On the other hand, the “pole as-
signment problem” can be examined in the context of a quadratic inverse eigenvalue
problem [26, 11, 6, 5], and a general technique for constructing families of quadratic
matrix polynomials with prescribed semisimple eigenstructure (but without “link-
age”) was proposed in [20]. In [2] the authors address the problem when a partial list
of eigenvalues and eigenvectors is given, and they provide a quadratically convergent
Newton-type method. Cai et al. in [4] and Yuan et al. in [29] deal with problems in
which complete lists of eigenvalues and eigenpairs (and no definiteness constraints are
imposed on M, D, K). In [27] and [1] the symmetric tridiagonal case with a partial
list of eigenvalues and eigenvectors is discussed.

A symmetric inverse quadratic proper value problem calls for the construction of
a family of real symmetric quadratic matrix polynomials (possibly with some defi-
niteness restrictions on the coefficients) consistent with prescribed spectral data [22].

11t is our convention to write members of R™ as column vectors unless stated otherwise, and to
denote them with bold lower case letters.
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 3

In particular, the assigned spectral data could ensure the asymptotic stability of the
system.

An inverse proper value problem may be ill-posed [9], and this is particularly so
for inverse quadratic proper value problems (IQPVP) arising from applications. This
is because structure imposed on an IQPVP depends inherently on the connectivity of
the underlying physical system. In particular, it is frequently necessary that, in the
inverse problem, the reconstructed system (and hence the matrix polynomial) satisfies
a connectivity structure (see Examples 2.1 and 2.2). In particular, the quadratic
inverse problem for physical systems with a serially linked structure is studied in [7],
and there are numerous other studies on generally linked structures (see [13, 23, 24],
for example).

In order to be precise about “linked structure” we need the following definitions:
A (simple) graph G = (V, E) consists of two sets V and E, where V|, the set of vertices
v; 18, in our context, a finite subset of positive integers, e.g. V ={1,2,...,n}, and E
is a set of pairs of vertices {v;,v;} (with v; # v;) which are called the edges of G. (In
the sense of [18], the graphs are “loopless”.)

If {v;,v;} € E we say v; and v; are adjacent (See [3]).
n(n—1)
—_—.

Clearly, the number of

edges in G cannot exceed
empty.

In order to visualize graphs, we usually represent vertices with dots or circles in
the plane, and if v; is adjacent to v;, then we draw a line (or a curve) connecting v; to
v;. The graph of a real symmetric matrix A € R™*" is a simple graph on n vertices
1,2,...,n, and vertices ¢ and j (i # j) are adjacent if and only if a;; # 0. Note that
the diagonal entries of A have no role in this construction.

Furthermore, the graph of a diagonal matrix is

2. Examples and problem formulation. We present two (connected) exam-
ples from mechanics. The first (Example 2.1) is a fundamental case where masses,
springs, and dampers are serially linked together, and both ends are fized. The second
one is a generally linked system and is divided into two parts (Examples 2.2 and 2.3)
and is from [7].

Ezxample 2.1. Consider the serially linked system of masses and springs sketched
in Figure 1. It is assumed that springs respond according to Hooke’s law and that
damping is negatively proportional to the velocity. All parameters m, d, k are positive,
and are associated with mass, damping, and stiffness, respectively.

7 L) f2() ) fa(®) 7
707 f— — — f— 7277
7077 7077
7000 720
2507 . 7077
15000 kl kQ k3 k4 k5 720
2 AANMAMAAAA— —AA— AA— AA—] AAMAA—Z22
7077 7257
A |— m]_ m2 m3 7”/4 A
22 | — — — —
7077 7077
7077 7077
7077 70
7077 7070
20 d1 dQ d'g d4 d5 20
vr77 T T T T rr77
7077 7077
7077 1 1 1 1 7070
7077 7077
,,,,, 1 1 1 1 2500
> > > >
I To I3 T4

Fic. 1. A four-degree-of-freedom serially linked mass-spring system.

There is a corresponding matrix polynomial

(2.1) Az) = Ag2® + A1z + Ay, A, eRPY 5=0,1,2,

This manuscript is for review purposes only.
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4 K. HASSANI MONFARED AND P. LANCASTER

where
my 0 0 0
_ 0 me O 0
A= 9 0 ms 0 |’
. O 0 0 my
dy + ds —do> 0 0 i
B —ds ds + ds —ds3 0
(22) A= 0 dy detds —de |
L 0 0 —day ds +ds ]
k1 + ko —ko 0 0 1
A — —ko ko + k3 —k3 0
0= 0 —k3 ks + k4 —ka
L 0 0 —k4 ks + ks ]

The graph of Ay consists of four distinet vertices (it has no edges). Because the
d’s and k’s are all nonzero, the graphs of Ay and A; coincide. For convenience, we
name them G and H respectively (see Figure 2).

—d —d —d
" OO O@
Fi1G. 2. Graphs of Ao and A1 in Eq. (2.2).

In the later sections we will study how to perturb a diagonal matrix polynomial
of degree two to achieve a new matrix polynomial, but the graphs of its coefficients
are just those of this tridiagonal A(z) (so that the physical structure of Figure 1 is
maintained). In order to do this, we define matrices with variables on the diagonal
entries and the nonzero entries of Ag and A; in Eq. (2.2) as follows (where the diagonal
entries of A, are z,;’s and the off-diagonal entries are zero or y,;’s). Thus, for n = 4,

Zo1 Yo, O 0 11 Y11 O 0
0 Y11 r12 Y12 O

2.3 Ay — Yo,1 To2 Yo,2 A, — , , ,
(23) 0 0 Yoo Zo3 Yoz | 0 w12 713 Y13
0 0  %.3 Zoa 0 0 w13 T14

More generally, the procedure is given in Definition 4.2.

In the next example we will, again, consider two graphs and their associated
matrices and then, in Example 2.3, we see how they can be related to a physical
network of masses and springs.

Ezample 2.2. Define the (loopless) graph G = (V1, E1) by Vi = {1,2,3,4} with
edges

(24) El = {62 = {172}7 €3 = {273}7 €4 = {374}7 €5 = {133}}7
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 5
and the graph H = (V3, E3) with Vo = {1,2, 3,4} and edges
(2.5) E; = {es ={1,3}, e3 = {3,4}}.

Then we can visualize G and H as shown in Figure 3.

OO 0010
—ks @

G H

Fic. 3. Graphs G and H.

Now define matrices K and D in Eq. (1.1) as follows:

[ ki + ko + kg —ko —ks 0
K = 71/”’2 k2 + kg 7]{3 0
o —ks —ks3 ks +kys+ ks —kg |’

0 0 —k k

(2.6) - ! !
di+da O —ds 0
0 0 0 0

D=1"_4, 0 dotds —ds

0 0 —dy d

where all d; and k; are positive. It is easily seen that the graph of K is G of Figure
3, since G is a graph on the 4 vertices 1,2,3, and 4, and the {1,2}, {1,3}, {2,3},
and {3,4} entries are all nonzero. Furthermore, G has edges {1, 2}, {1,3}, {2,3}, and
{3,4} corresponding to the nonzero entries of K. Similarly, one can check that the
graph of D is H.

Let G and H be the graphs shown in Figure 3, and let D and K be defined as in
Eq. (2.6). Using Definition 4.2, we define matrices associated with the graphs:

To1 ¥Yo,1 Yo2 O z1p0 0 w11 O

(2.7) A= | Yo oz Y03 0 A= 0 z12 O 0
Yo,2 Y0,3 03 Yo,a g 0 w3 Y1
0 0  Yo4 Toa 0 0 w12 T14

so that

(28) K= Ao(kl + kQ + kSa k? + k3a k3 + k4 + k57 k47 _k27 _k37 _k47 _k5)7

(2.9) D = Ay(dy +dg, 0, d2 +ds, d3, —da, —d3).

More generally, in this paper, structure is imposed on L(z) in Eq. (1.1) by requir-
ing that M is positive definite and diagonal, D and K are real and symmetric, and
nonzero entries in D and K are associated with the connectivity of nodes in a graph
- as illustrated above.

This manuscript is for review purposes only.
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6 K. HASSANI MONFARED AND P. LANCASTER

Ezample 2.3. (See [7].) A vibrating “mass/spring” system is sketched in Figure
4. Tt is assumed that springs respond according to Hooke’s law and that damping is
negatively proportional to the velocity.

The quadratic polynomial representing the dynamical equations of the system has
the form Eq. (1.1) with n = 4. The coefficient matrices corresponding to this system
are the diagonal matrix

(2.10) M = diag[my, ma, m3, my)

and matrices D and K in Eq. (2.6). It is important to note that (for physical reasons)
the m;, d;, and k; parameters are all positive.

Ji(t)
e
' Ja(t)
ks —
VVWAVYWWW WA
7 n Ja(t)
7 L —
52 —VVWWWWAWAA— L AAAA
7 my mg my
7 If 2(t) |_|
27 M e
7 L ds L,
i dq ko k3 .
200 VW VW |
mo :
T 1
! 1
T ! 1
: ' : I
1
| I | e
1 — 4

Fic. 4. A four-degree-of-freedom mass-spring system.

Consider the corresponding system in Eq. (1.1) together with matrices in Eq. (2.6).
The graphs of K and D are, respectively, G and H in Figure 3. Note that the two
edges of graph H correspond to the two dampers between the masses (that is, dampers
dy and ds), and the four edges of G correspond to the springs between the masses
(with constants ko, ..., ks) in Figure 4. In contrast, d; and k; contribute to just one
diagonal entry of L(z).

Using the ideas developed above we study the following more general problem:
A Structured Inverse Quadratic Problem:
For a given set of 2n real numbers, A, and given graphs G and H on n vertices, do
there exist real symmetric matrices M, D, K € R™*" such that the set of proper values
of L(z) = M2? + Dz + K is A, M is diagonal and positive definite, the graph of D is
H, and the graph of K is G? (Note, in particular, that the constructed systems are
to have entirely real spectrum.)

More generally, we study problems of this kind of higher degree - culminating in
Theorem 5.2. A partial answer to the “quadratic” problem is provided in Corollary
5.3. In particular, it will be shown that a solution exists when the given proper values
are all distinct. The strategy is to start with a diagonal matrix polynomial with
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 7

the given proper values, and then perturb the off diagonal entries of the coefficient
matrices so that they realize the given graph structure. In doing so the proper values
change. Then we argue that there is an adjustment of the diagonal entries so that
the resulting matrix polynomial has the given proper values. The last step involves
using the implicit function theorem. Consequently, all the perturbations are small and
the resulting matrix is close to a diagonal matrix. We solve the problem for matrix
polynomials of general degree, k, and the quadratic problem is the special case k = 2.

The authors of [7] deal with an inverse problem in which the graphs G and H
are paths. That is, the corresponding matrices to be reconstructed are tridiagonal
matrices where the superdiagonal and subdiagonal entries are nonzero as in Example
2.1 (but not Example 2.2). In this particular problem only a few proper values and
their corresponding proper vectors are given. For more general graphs, it is argued
that “the issue of solvability is problem dependent and has to be addressed structure
by structure.” This case, in which the graphs of the matrices are arbitrary and only
a few proper values and their corresponding proper vectors are given, is considered in
[13, 23, 24].

3. The higher degree problem. The machinery required for the solution of
our inverse quadratic problems is readily extended for use in the context of problems
of higher degree. So we now focus on polynomials A(z) of general degree k > 1 with
Ag, A1, ..., A € R™™ and symmetric. With z € C, the polynomials have the form

(3.1) A(z) = A"+ + A1z 4+ Ay, A #0,
and we write
(3.2) AW (2) = kAR 4 4 2452 4 Ay

Since A # 0, the matrix polynomial A(z) is said to have degree k. If det A(z) has
an isolated zero at zy of multiplicity m, then zg is a proper value of A(z) of algebraic
multiplicity m. A proper value with m = 1 is said to be simple.

If 2z is a proper value of A(z) and the null space of A(z) has dimension r, then
20 is a proper value of A(z) of geometric multiplicity r. If zo is a proper value of A(z)
and its algebraic and geometric multiplicities agree, then the proper value z; is said
to be semisimple.

We assume that all the proper values and graph structures associated with Ay,
Ay, ..., Ay are given (as in Eq. (2.2), where k = 2). We are concerned only with
the solvability of the problem. In particular, we show that when all the proper values
are real and simple, the structured inverse quadratic problem is solvable for any given
graph-structure. The constructed matrices, Ag, A1, ..., A, will then be real and sym-
metric. More generally, our approach shows the existence of an open set of solutions
for polynomials of any degree and the important quadratic problem (illustrated above)
is a special case. Consequently, this shows that the solution is not unique.

The techniques used here are generalizations of those appearing in [18], where the
authors show the existence of a solution for the linear structured inverse eigenvalue
problem. A different generalization of these techniques is used in [17] to solve the
linear problem when the solution matrix is not necessarily symmetric, and this admits
complex conjugate pairs of eigenvalues.

First consider a diagonal matrix polynomial with some given proper values. The
graph of each (diagonal) coefficient of the matrix polynomial is, of course, a graph with
vertices but no edges (an empty graph). We suppose that such a graph is assigned for

This manuscript is for review purposes only.
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each coefficient. We perturb the off-diagonal entries (corresponding to the edges of the
graphs) to nonzero numbers in such a way that the new matrix polynomial has given
graphs (as with G and H in Examples 2.1 and 2.2). Of course, this will change the
proper values of the matrix polynomial. Then we use the implicit function theorem to
show that if the perturbations of the diagonal system are small, the diagonal entries
can be adjusted so that the resulting matrix polynomial has the same proper values
as the unperturbed diagonal system.

In order to use the implicit function theorem, we need to compute the derivatives
of a proper value of a matrix polynomial with respect to perturbations of one entry
of one of the coefficient matrices. That will be done in this section. Then, in Section
4, we construct a diagonal matrix polynomial with given proper values and show that
a function that maps matrix polynomials to their proper values has a nonsingular
Jacobian at this diagonal matrix. In Section 5, the implicit function theorem is used
to establish the existence of a solution for the structured inverse problem.

3.1. Symmetric perturbations of diagonal systems. Now let us focus on
matrix polynomials A(z) of degree k with real and diagonal coefficients. The next
lemma provides the derivative of a simple proper value of A(z) when the diagonal
A(z) is subjected to a real symmetric perturbation. Thus, we consider

(3.3) C(z,t) := A(z) + tB(z)
where t € R, [t| < € for some & > 0, and
(3.4) B(z) = Bpz" + By_12" "+ -+ Biz+ By

with BT = B, e R™*" for s =0,1,2,...,k.

Let us denote the derivative of a variable ¢ with respect to the perturbation
parameter ¢ by ¢. Also, let e, € R™ be the rth column of the identity matrix (i.e. it
has a 1 in the rth position and zeros elsewhere). The following lemma is well-known.
A proof is provided for expository purposes.

LEMMA 3.1 (See Lemma 1 of [21]). Let k and n be fized positive integers and let
A(z) in Eq. (3.1) have real, diagonal, coefficients and a simple proper value zy. Let
2(t) be the unique (necessarily simple) proper value of C(z,t) in Eq. (3.3) for which
z(t)

— 20 ast — 0. Then there is an r € {1,2,...,n} for which
: (B(20))
3.5 0) = ———1—-5,
(3.5) £(0) (A(l)(zo))M

Proof. First observe that, because 2 is a simple proper value of A(2), there exists
an analytic function of proper values z(t) for C(z,t) defined on a neighbourhood
of t = 0 for which z(t) — zp as ¢ — 0. Furthermore, there is a corresponding
differentiable proper vector v(t) of C(z,t) for which v(¢) — e, for somer =1,2,...,n,
as t — 0 (See Lemma 1 of [21], for example). Thus, in a neighbourhood of t = 0 we
have

(3.6) C(z(t),t)v(t) = (A(z) + tB(z))'v(t) =0.
Then observe that
% (27 (t)(A; +tB))) =327 (4)2(t) (A, + tB)) + 2 (t)B;
t=0 t=0

= j2} 7 2(0)A; + 2 B;.

This manuscript is for review purposes only.
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 9

Thus, taking the first derivative of Eq. (3.6) with respect to ¢ and then setting ¢t = 0
we have v(0) = e, and

(3.7) ((A<1>(zo)2(o) + B(ZO)) er + A(z0)9(0) = 0.

Multiply by e, from the left to get

(3.8) e] AV (2)2(0)e, + e B(z)e, + e A(z0)9(0) = 0.

But e, is a left proper vector of A(z) corresponding to the proper value zg. Thus,

e} A(z) =0T, and (3.5) follows from (3.8). |

Now we can calculate the changes in a simple proper value of A(z) when an entry
of just one of the coefficients, Ay, is perturbed — while maintaining symmetry.

DEFINITION 3.2. For 1 <1i,j <n, define the symmetric n x n matrices E;; with:
(a) exactly one nonzero entry, e;; = 1, when j =i, and
(b) exactly two nonzero entries, e;; = e;; = 1, when j # i.

We perturb certain entries of A(z) in Eq. (3.1) (maintaining symmetry) by ap-
plying Lemma 3.1 with B(z) = 2™ E;; to obtain:

COROLLARY 3.3. Let A(z) in Eq. (3.1) be diagonal with a simple proper value zq
and corresponding unit proper vector e,.. Let z,,(t) be the proper value of the perturbed
system A(z) + t(z™E;;), for some i,j € {1,2,...,n}, that approaches zy ast — 0.
Then

_2671

(39) £n(0) = { (AW (=),
0 when i # j.

when r =1 =j,

Note also that, when we perturb off-diagonal entries of the diagonal matrix function
A(z) in Eq. (3.1), we obtain Z,,(0) = 0.

4. A special diagonal matrix polynomial.

4.1. Construction. We construct an n x n real diagonal matrix polynomial
A(z) of degree k, with given real proper values A1, Ag, ..., Ayk. Then (see Eq. (4.9))
we define a function f that maps the entries of A(z) to its proper values and show
that the Jacobian of f when evaluated at the constructed A(z) is nonsingular. This
construction prepares us for use of the implicit function theorem in the proof of the
main result in the next section.

Step 1: Let [k],- denote the sequence of k integers {(r—1)k+1, (r—1)k=+2,...,rk},
for r = 1,2,...,n. Thus, [k; = {1,2,...,k}, [k]s = {k+ 1,k +2,...,2k}, and
kln={(n=1k+1,(n—1)k+2,...,nk}. We are to define an n x n diagonal matrix

polynomial A(z) where, for ¢ = 1,2,...,n, the zeros of the i-th diagonal entry are
exactly those proper values A\, of A(z) with ¢ € [k];.
Step 2: Let ag.1,..., 0, be assigned positive numbers. We use these numbers

to define the n diagonal entries for each of k diagonal matrix polynomials (of size
n x n). Then, for s =0,1,...,k—1,and t = 1,2,...,n we define

(4.1) sy = (—1)F oy Z H Ag-

QC[k]: q€Q
1Ql=k~s

This manuscript is for review purposes only.
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10 K. HASSANI MONFARED AND P. LANCASTER

Thus, the summation is over all subsets of size k — s of the set of integers [k];.
Now define

Qs 1 0 0
0 Qg - 0
(4.2) Ay = ) . ) . for s=0,1,...,k,
0 0 oagp

(4.3) Az) =) Az

Using (4.1) and the fact that ay, ; # 0 for each j, we see that

Qg1 H (z—Ag) 0 0

q€[k]1

0 e 2 H (z—2Ag) - 0
(44) A(z) = q€(k]2
0 0 o T -2

q€(k]n

has degree k, and the assigned proper values are A1, A, ..., Ank. Note that the proper
vector corresponding to A, is e, for ¢ € [k],. This completes our construction.

In the following theorem we use Corollary 3.3 to examine perturbations of either
a diagonal entry (i,i) of A(z) in Eq. (4.4), or two of the (zero) off-diagonal entries,
(i,4) and (j,1), of A(2).

THEOREM 4.1. Let A1, g, ..., A\ni be nk distinct real numbers, and let A(z) be
defined as in Eq. (4.4). For a fited m € {0,1,...,k—1} and with E;; as in Definition
3.2, define

Phi(z,t) = A(2) + 2™tE;;.

If 1 < q < nk, and N3, (t) is the proper value of Py (z,t) that tends to A as
t — 0, then

. _\m
2, I e

(4.5) <8)\q,m(t)> _ L AO0 ifi=j=r andq € [k],,

t=0

ot 0, otherwise.

Proof. Tt follows from the definition in Eq. (4.4) that det AM()\,) # 0 for all
qg=1,2,...,nk. That is, A(l)()\q)rr # 0, for r =1,2...,n. Then Eq. (4.5) follows
from Corollary 3.3. a

4.2. The role of graphs. We are going to construct matrices with variable
entries, in order to adapt Corollary 3.3 to the case when the entries of the n x n
diagonal matrix A in Eq. (4.4) are independent variables. A small example of such a
matrix appears in Example 2.2.

This manuscript is for review purposes only.
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344 Let Go,G1,- -+ ,Gk—1 be k graphs on n vertices and, for 0 < s < k—1, let G,
345 have mg edges {is, ji},2*, (k=2 and n = 4 in Example 2.2). Define 2k vectors (2 per
346 graph):

(4.6)
347 Ts = (Ts1,-- s Tsn) ER™, Ys = Ys 1, Ys,m,) ER™,  s=0,1,...,k—1,

348 and let m = mg +mq + - -+ + mg_1 be the total number of the edges of all G5. (See
349  Figure 3, where k =2 and n = 4.)

350 DEFINITION 4.2. (The matriz of a graph - see Example 2.2) For s =0,1,--- ,k—
351 1, let My = Mg(xs,ys) be an n X n symmetric matriz whose diagonal (i,1) entry is
352 x5, the off-diagonal (ig, ji) and (je,ir) entries are ys o where {z;,,x;,} are edges of
353 the graph G, and all other entries are zeros. We say that M is the matriz of the
354 graph Gs.
355 Now let Ay be the n x n diagonal matrix in Eq. (4.2) (the leading coefficient of
356 A(z)) and, using Definition 4.2, define the n x n matrix polynomial

k—1
357 (4.7) M = M(z,x,y) = 2" Ay + Z 2°My(xs,ys),

s=0

358 where = (xg,...,Tr_1) € R* and y = (yo,...,Yx_1) € RF™s. Thus, the coeffi-
359  cients of the matrix polynomial M (z, x,y) are defined in terms of k graphs, G, each
360 having n vertices and mg edges, for s =0,1,...,k — 1. Note that, with the definition
361 of the diagonal matrix polynomial A(z) in (4.4), we have

362 (4.8) A(z) =M(z,a0,01,...,,-1,0,0,...,0),

363  where oty = (51,52, ...,0Qs ), for each s =0,1,...,k — 1.

364 Recall that the strategy is to

365 a) perturb those off-diagonal (zero) entries of the diagonal matrix A(z) in Eq. (4.4)}}
366 that correspond to edges in the given graphs G to small nonzero numbers,
367 and then

368 b) adjust the diagonal entries of the new matrix so that the proper values of the
369 final matrix coincide with those of A(z).

370 In order to do so, we keep track of the proper values of the matrix polynomial M in
371 Eq. (4.7) by defining the following function:

w
=~
N

f: Rkner N Rkn
(49) (sc,y) = (/\I(M)’)\2(M)77)\kn(M))a

W
™
OO

where A\,(M) is the g-th smallest proper value of M (z,,y).

In order to show that, after small perturbations of the off-diagonal entries of A(z),
its proper values can be recovered by adjusting the diagonal entries, we will make use
of a version of the implicit function theorem (stated below as Theorem 5.1). But in
379 order to use the implicit function theorem, we will need to show that the Jacobian of
380  the function f in (4.9) is nonsingular at A(z).

381 Let Jac,(f) denote the submatrix of the Jacobian matrix of f containing only the
382 columns corresponding to the derivatives with respect to x variables. Then Jac,(f)

w W W w
~N 3 3

© =
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is
(4.10)
r 8)\1 6/\1 8A1 8)\1
00,1 0xo,n 0Tk—1,1 0Tk —1,n
Ok _OAg Oy _OAp
0x0,1 9Zo,n OTk—1.1 OTk—1.n
OX(n—1)k+1 OXN(n—1)k+1 OXN(n—1)k+1 ON(n— 1) k+1
0z0,1 0zo,n 0Tk—_11 OTp—_1,n
Odnke. O _OAnk _OAnk
L 0x0,1 0xo,n Ork—1,1 0Tk —1,n

where each block is k x n, and there are n block rows and k block columns. Note
that, for example, the (1,1) entry of Jac,(f) is the derivative of the smallest proper
value of M with respect to the variable in the (1,1) position of My, and similarly
the (nk,nk) entry of Jac,(f) is the derivative of the largest proper value of M with

respect to the variable in the (n,n) position of Mj_;.
Then, using Theorem 4.1 we obtain:

COROLLARY 4.3. Let A(z) be defined as in Eq. (4.4). Then

(4.11)

Proof. Note that the derivative is taken with respect to x, .. That is, with respect
to the (r,r) entry of the coefficient of z°. Thus, using the terminology of Theorem

ONg
8:0” A(z)

! if q € [K]r,

(AN (),

0, otherwise.

4.1, the perturbation to consider is PI"(z,t). Then

(4.12)

LY
ot ),

_)\;
(A(l) ()\q))rr ’

0, otherwise.

The main result of this section is as follows:

THEOREM 4.4. Let A(z) be defined as in Eq. (4.4), and f be defined by Eq. (4.9).

Then Jacy(f)

18 nonsingular.
(=)
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Proof. Corollary 4.3 implies that Jac,(f) is
A(z)
(4.13)
i 1 9 ... 0 DY S S
(AM ), (amn),,
: : S k:ﬁ1 : oo
0o --- 0 Ak
(A(l)()\k))u W 0O -~ 0
J=—
. 1 . A?;jl)k+1
0 0 (AONn—1ykt1)), 0 0 (AOAm-1ykt1)),
0 - 0 1 o A=
I (AD (), 0o --- 0 (ZTBYXiZSFZZ

Multiply J by —1, and multiply row ¢ of J by (A(l)()\q))w7 forq=1,2,...,kn, and
for the corresponding r, then reorder the columns to get

Tl oA e A T
D PR i
. : o
IS VR )\’;—1
(4.14) s : ,
=T
L Am—ykes1 o >\§€n—1)k+1
L An—vrtz - )\(rj—ll)k+2
0 . . .
L 1 )\nk co )\221 i

which is a block diagonal matrix where each diagonal block is an invertible Vander-
monde matrix since the \’s are all distinct. Hence J is nonsingular. O

5. Existence Theorem. Now we use a version of the implicit function theorem
to establish the existence of a solution for the structured inverse proper value problem
(see [14, 19)]).

THEOREM 5.1. Let F : R¥T" — R® be a continuously differentiable function on
an open subset U of R®T" defined by

(51) F(w’y):(Fl(m’y)vFQ(mvy)w'~an(x7y))7

where x = (1,...,25) € R® and y € R". Let (a,b) be an element of U with a € R®
and b € R", and ¢ be an element of R® such that F(a,b) = c. If

(a,b)]

OF;
81‘]‘

(5.2)
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is nonsingular, then there exist an open neighbourhood V' of a and an open neigh-
bourhood W of b such that V. x W C U and for each y € W there is an x € V with
F(z,y) =c.

Recall that we are looking for a matrix polynomial of degree k, with given proper
values and a given graph for each non-leading coefficient. The idea is to start with the
diagonal matrix Eq. (4.4) and perturb the zero off-diagonal entries corresponding to
the edges of the graphs to some small nonzero numbers in a symmetric way. As long
as the perturbations are sufficiently small, the implicit function theorem guarantees
that the diagonal entries can be adjusted so that the proper values remain unchanged.

Note also that, in the next statement, the assigned graphs Gg,G1, -+ ,Gk_1 de-
termine the structure of the coefficients Ag,- - , Ax—1 of A(z).
THEOREM 5.2. Let A1, Ag, ..., Apk be nk distinct real numbers, let g 1,...,00 5

be positive (nonzero) real numbers and, for 0 < s < k — 1, let G5 be a graph on n
vertices.

Then there is an n X n real symmetric matriz polynomial A(z) = Zl::o Agz® for
which:
(a) the proper values are A1, Aa, ..., Ak,
(b) the leading coefficient is Ay = diaglog 1, k2, ..., Qkn),
(c) fors=0,1,...,k—1, the graph of A, is Gs.

Proof. Without loss of generality assume that A\; < Ao < .-+ < A\pi. Let Gy
have my edges for s = 0,1,--- ,k — 1 and m = mg + --- + my_1, the total number
of edges. Let a = (a1, 0,2, - -, Qkn) € R™, where ay, are defined as in Eq. (4.1),
for s =0,1,....,k—1and r = 1,2,...,n, and let 0 denote (0,0,...,0) € R™. Also,
let A(z) be the diagonal matrix polynomial given by Eq. (4.4), which has the given
proper values. Recall from Eq. (4.8) that A(z) = M(z,a,0). Let the function f be
defined by Eq. (4.9). Then

(5.3) f = f(z,a,0) = (A1, A2, ..., Api)-
A(z)

By Theorem 4.4 the function f has a nonsingular Jacobian at A(z).

By Theorem 5.1 (the implicit function theorem), there is an open neighbourhood
U C R™ of @ and an open neighbourhood V' C R™ of 0 such that for every e € V
there is some @ € U (close to a) such that

(54) f(z,&,e) = (/\17)\27--'7)\nk)-

Choose € € V such that none of its entries are zero, and let A(z) = M(z,@,¢).
Then A(z) has the given proper values, and by definition, the graph of A, is G, for
s=0,1,....k—1. 0

Note that the proof of Theorem 5.2 shows only that there is an m dimensional
open set of matrices A(z) with the given graphs and proper values, and we say nothing
about the size of this set. In the quadratic examples of Section 2, the parameter m
becomes the total number of springs and dampers. In this context we have:

COROLLARY 5.3. Given graphs G and H onn vertices, a positive definite diagonal
matric M, and 2n distinct real numbers A1, Ao, ..., Aon, there are real symmetric
matrices D and K whose graphs are G and H, respectively, and the quadratic matrix
polynomial L(z) = Mz? + Dz + K has proper values A1, Az, ..., Aop.
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6. Numerical Examples. In this section we provide two numerical examples
corresponding to the two systems of Examples 2.1 and 2.3. Both examples correspond
to quadratic systems on four vertices, and in both cases the set of proper values is
chosen to be the set of distinct real numbers {—2,—4,...,—16}. The existence of
matrix polynomials with given proper values and graphs given below is guaranteed
by Corollary 5.3. For a numerical example, we choose all the nonzero off-diagonal
entries to be 0.5. Then the multivariable Newton method is used to approximate the
adjusted diagonal entries to arbitrary precision.

We mention in passing that to say “off-diagonal entries are sufficiently small”
means that Newton’s method starts with an initial point sufficiently close to a root.
Also, since all the proper values are simple, the iterative method will converge locally.
But the detailed analysis of convergence rates and radii of convergence are topics for
a separate paper.

In the following examples we provide an approximation of the coefficient matrices
rounded to show ten significant digits. However, the only error in the computations
is that of root finding, and in this case, that of Newton’s method, and the proper
values of the resulting approximate matrix polynomial presented here are accurate to
10 significant digits. The Sage code to carry the computations can be found on github
[16].

Ezample 6.1. Let A = {—2,—4,—6,...,—16}, and let the graphs G and H be as
shown in Figure 5. The goal is to construct a quadratic matrix polynomial

(6.1) L(z)=Mz* + Dz + K, M,D,K € R"*",

where the graph of D is H, the graph of K is G (in this case, as in Example 2.1, both
are tridiagonal matrices), and the proper values of L(z) are given by the diagonal

entries of A.
¢ —@—O—@

" O—@—O—@

F1G. 5. Graphs of K and D of Eq. (2.2).

For simplicity, choose M to be the identity matrix. We start with a diagonal
matrix polynomial A(z) whose proper values are the diagonal entries of A:

100 0 6 0 0 0 8 0 0 0
lo1 00|, o o o 0 48 0 0

62 A=|0g 01 0| FT|lo 02 o|*T|o o0 120 o0
000 1 0 0 0 30 0 0 0 224

Note that the (1,1) entries are the coeflicients of (z — 2)(x — 4), the (2,2) entries
are the coefficients of (x — 6)(x — 8) and so on. Then, perturb all the superdiagonal
entries and subdiagonal entries of A(z) to 0.5 and, using Newton’s method, adjust
the diagonal entries so that the proper values remain intact. An approximation of the

This manuscript is for review purposes only.
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perturbed matrix polynomial L(z) is given by:

(6.3)
5.86747042533934 0.5 0 0
D~ 0.5 13.6131619433928 0.5 0
0 0.5 21.6432681505587 0.5
0 0 0.5 30.8760994807091
(6.4)
7.74561103829716 0.5 0 0
K~ 0.5 46.6592230163013 0.5 0
0 0.5 119.082534340571 0.5
0 0 0.5 240.017612939283
Ezample 6.2. Let A = {—2,—4,-6,...,—16}, and let graphs G and H be as

shown in Figure 6. The goal is to construct a quadratic matrix polynomial

(6.5) L(z)=Mz* + Dz + K, M,D,K € R"™",

where the graph of D is H, the graph of K is G, and the proper values of L(z) are
the diagonlal entries of A.

@b/@@@ O—@
®

Fic. 6. Graphs of K and D.

Choose M to be the identity matrix and start with the same diagonal matrix
polynomial A(z) as in Eq. (6.2). Perturb those entries of A(z) corresponding to an
edge to 0.5 and, using Newton’s method, adjust the diagonal entries so that the proper
values are not perturbed. An approximation of the matrix polynomial L(z) is given
by:

(6.6)
[ 5.96497947933414 0 0.5 0
D~ 0 13.9962664239873 0 0
0.5 0 21.2163179014646 0.5
L 0 0 0.5 30.8224361952140 |
(6.7)
[ 7.94384133116825 0.5 0.5 0
K~ 0.5 48.0284454626440 0.5 0
0.5 0.5 113.276104063793 0.5
L 0 0 0.5 239.067195294473 |

7. Conclusions. Linked vibrating systems consisting of a collection of rigid com-
ponents connected by springs and dampers require the spectral analysis of matrix
functions of the form Eq. (1.1). As we have seen, mathematical models for the analy-
sis of such systems have been developed by Chu and Golub ([7, 8, 9]) and by Gladwell
[15], among others. The mass distribution in these models is just that of the com-
ponents, and elastic and dissipative properties are associated with the linkage of the
parts, rather than the parts themselves.
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Thus, for these models, the leading coefficient (the mass matrix) is a positive
definite diagonal matrix. The damping and stiffness matrices have a zero-nonzero
structure dependent on graphs (e.g. tridiagonal for a path) which, in turn, determine
the connectivity of the components of the system.

In this paper a technique has been developed for the solution of some inverse
vibration problems in this context for matrix polynomials of a general degree k as in
Eq. (3.1), and then the results are applied to the specific case of quadratic polynomi-
als, with significant applications. Thus, given a real spectrum for the system, we show
how corresponding real coefficient matrices M, D, and K can be found, and numer-
ical examples are included. The technique applies equally well to some higher-order
differential systems, and so the theory has been developed in that context.

In principle, the method developed here could be extended to the designs of
systems with some (possibly all) non-real proper values appearing in conjugate pairs
as is done for the linear case in [17].
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