
INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING1

SYSTEMS∗2

KEIVAN HASSANI MONFARED† AND PETER LANCASTER‡3

Abstract. The two main approaches to problems of noise, vibration, and harshness in the auto-4
motive industry are (a) structural modification by passive elements and (b) active control. They both5
lead to inverse quadratic eigenvalue problems in which the coefficient matrices are real-symmetric6
and satisfy given connectivity conditions. In this paper we show that a ‘generic’ problem of this sort7
always has a solution. More generally, we show the existence of a solution for a structured inverse8
spectral problem for polynomials of any given degree, and then apply the results to the quadratic9
case.10

In particular, let Λ = {λ1, λ2, . . . , λnk} be a set of nk distinct real numbers and let G0, G1,11
. . ., Gk−1 be k graphs on n nodes. It is shown that there are k + 1 real symmetric n × n matrices12
A0, . . . , Ak, such that the matrix polynomial A(z) := Akz

k + · · · + A1z + A0 has the following13
properties: (a) the spectrum of A(z) is Λ, (b) the graph of As is Gs for s = 0, 1, . . . , k − 1 and, (c)14
Ak is an arbitrary positive definite diagonal matrix. Moreover, it is shown that, for any given sets15
of graphs and spectra of this kind, there are infinitely many such solution sets A0, . . . , Ak . When16
k = 2, this solves a physically significant inverse eigenvalue problem for linked vibrating systems (see17
Section 2 and Corollary 5.3).18
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1. Introduction. Inverse eigenvalue problems are of interest in both theory and22

applications. See, for example, the book of Gladwell [15] for applications in mechanics,23

the review article by Chu and Golub [8] for linear problems, the monograph by Chu24

and Golub [9] for general theory, algorithms and applications, and many references25

collected from various disciplines. In particular, the Quadratic Inverse Eigenvalue26

Problems (QIEP) are important and challenging because the general techniques for27

solving linear inverse eigenvalue problems cannot be applied directly. We empha-28

size that the structure, or linkage, imposed here is a feature of the physical systems29

illustrated in Section 2, and “linked” systems of this kind (imposing zero/nonzero30

conditions on some entries of A(z)) are our main concern.31

Although the QIEP is important, the theory is presented here in the context32

of higher degree inverse spectral problems, and this introduction serves to set the33

scene and provide motivation for the more general theory developed in the main34

body of the paper – starting with Section 3. The techniques used here generate35

systems with entirely real spectrum and perturbations which preserve this property.36

The method could be generalized to admit non-real conjugate pairs in the spectrum37

and the associated oscillatory behaviour. For example, the linear inverse eigenvalue38

problem admitting conjugate pairs of eigenvalues is solved in [17]. However, there39

may be some physical advantage in ensuring no oscillatory solutions by restricting40

attention to entirely real spectrum.41

QIEPs appear repeatedly in various scientific areas including structural mechan-42
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2 K. HASSANI MONFARED AND P. LANCASTER

ics, acoustic systems, electrical oscillations, fluid mechanics, signal processing, and43

finite element discretisation of partial differential equations. In general, properties of44

the underlying physical system determine the matrix coefficients, while the behaviour45

of the system can be interpreted in terms of associated eigenvalues and eigenvectors.46

See Sections 5.3 and 5.4 of [9], where symmetric QIEPs are discussed.47

Indeed, two important variations of such quadratic inverse eigenvalue problems48

arise in active vibration control (AVC) and finite element model updating (FEMU) in49

mechanical vibration [12]. There are also important applications of model updating50

in damage detection and health monitoring in vibrating structures [10]. Furthermore,51

authors of [25] formulate quadratic inverse eigenvalue problems for the solution of52

vibration absorption problems in the automotive industry:53

“. . . in the automotive industry the resolution of noise, vibration54

and harshness (NVH) problems is of extreme importance to customer55

satisfaction. In rotorcraft it is vital to avoid resonance close to the56

blade passing speed and its harmonics. An objective of the great-57

est importance, and extremely difficult to achieve, is the isolation of58

the pilot’s seat in a helicopter. It is presently impossible to achieve59

the objectives of vibration absorption in these industries at the design60

stage because of limitations inherent in finite element models. There-61

fore, it is necessary to develop techniques whereby the dynamic of the62

system (possibly a car or a helicopter) can be adjusted after it has63

been built. There are two main approaches: structural modification64

by passive elements and active control.”65

In this article it will be convenient to distinguish an eigenvalue of a matrix from66

a zero of the determinant of a matrix-valued function, which we call a proper value.67

(Thus, an eigenvalue of matrix A is a proper value of Iz − A.) Given a quadratic68

matrix polynomial69

(1.1) L(z) = Mz2 +Dz +K, M,D,K ∈ Rn×n,70

the direct problem is to find scalars z0 and nonzero vectors1 x ∈ Cn satisfying71

L(z0)x = 0. The scalars z0 and the vectors x are, respectively, proper values and72

proper vectors of the quadratic matrix polynomial L(z).73

A broad survey of theory, applications, and a variety of numerical techniques74

for the direct quadratic problem appears in [28]. On the other hand, the “pole as-75

signment problem” can be examined in the context of a quadratic inverse eigenvalue76

problem [26, 11, 6, 5], and a general technique for constructing families of quadratic77

matrix polynomials with prescribed semisimple eigenstructure (but without “link-78

age”) was proposed in [20]. In [2] the authors address the problem when a partial list79

of eigenvalues and eigenvectors is given, and they provide a quadratically convergent80

Newton-type method. Cai et al. in [4] and Yuan et al. in [29] deal with problems in81

which complete lists of eigenvalues and eigenpairs (and no definiteness constraints are82

imposed on M, D, K). In [27] and [1] the symmetric tridiagonal case with a partial83

list of eigenvalues and eigenvectors is discussed.84

A symmetric inverse quadratic proper value problem calls for the construction of85

a family of real symmetric quadratic matrix polynomials (possibly with some defi-86

niteness restrictions on the coefficients) consistent with prescribed spectral data [22].87

1It is our convention to write members of Rn as column vectors unless stated otherwise, and to
denote them with bold lower case letters.
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 3

In particular, the assigned spectral data could ensure the asymptotic stability of the88

system.89

An inverse proper value problem may be ill-posed [9], and this is particularly so90

for inverse quadratic proper value problems (IQPVP) arising from applications. This91

is because structure imposed on an IQPVP depends inherently on the connectivity of92

the underlying physical system. In particular, it is frequently necessary that, in the93

inverse problem, the reconstructed system (and hence the matrix polynomial) satisfies94

a connectivity structure (see Examples 2.1 and 2.2). In particular, the quadratic95

inverse problem for physical systems with a serially linked structure is studied in [7],96

and there are numerous other studies on generally linked structures (see [13, 23, 24],97

for example).98

In order to be precise about “linked structure” we need the following definitions:99

A (simple) graph G = (V,E) consists of two sets V and E, where V , the set of vertices100

vi is, in our context, a finite subset of positive integers, e.g. V = {1, 2, . . . , n}, and E101

is a set of pairs of vertices {vi, vj} (with vi 6= vj) which are called the edges of G. (In102

the sense of [18], the graphs are “loopless”.)103

If {vi, vj} ∈ E we say vi and vj are adjacent (See [3]). Clearly, the number of104

edges in G cannot exceed n(n−1)
2 . Furthermore, the graph of a diagonal matrix is105

empty.106

In order to visualize graphs, we usually represent vertices with dots or circles in107

the plane, and if vi is adjacent to vj , then we draw a line (or a curve) connecting vi to108

vj . The graph of a real symmetric matrix A ∈ Rn×n is a simple graph on n vertices109

1, 2, . . . , n, and vertices i and j (i 6= j) are adjacent if and only if aij 6= 0. Note that110

the diagonal entries of A have no role in this construction.111

2. Examples and problem formulation. We present two (connected) exam-112

ples from mechanics. The first (Example 2.1) is a fundamental case where masses,113

springs, and dampers are serially linked together, and both ends are fixed. The second114

one is a generally linked system and is divided into two parts (Examples 2.2 and 2.3)115

and is from [7].116

Example 2.1. Consider the serially linked system of masses and springs sketched117

in Figure 1. It is assumed that springs respond according to Hooke’s law and that118

damping is negatively proportional to the velocity. All parameters m, d, k are positive,119

and are associated with mass, damping, and stiffness, respectively.

m1 m2 m3 m4

k1 k2 k3 k4 k5

d1 d2 d3 d4 d5

f1(t) f2(t) f3(t) f4(t)

x1 x2 x3 x4

Fig. 1. A four-degree-of-freedom serially linked mass-spring system.

120

There is a corresponding matrix polynomial121

(2.1) A(z) = A2z
2 +A1z +A0, As ∈ R4×4, s = 0, 1, 2,122

This manuscript is for review purposes only.



4 K. HASSANI MONFARED AND P. LANCASTER

where123

A2 =


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

 ,

A1 =


d1 + d2 −d2 0 0
−d2 d2 + d3 −d3 0
0 −d3 d3 + d4 −d4
0 0 −d4 d4 + d5

 ,

A0 =


k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4
0 0 −k4 k4 + k5

 .

(2.2)124

125

126

The graph of A2 consists of four distinct vertices (it has no edges). Because the127

d’s and k’s are all nonzero, the graphs of A0 and A1 coincide. For convenience, we128

name them G and H respectively (see Figure 2).129

G : 1 2 3 4
−k2 −k3 −k4

H : 1 2 3 4
−d2 −d3 −d4

Fig. 2. Graphs of A0 and A1 in Eq. (2.2).

In the later sections we will study how to perturb a diagonal matrix polynomial130

of degree two to achieve a new matrix polynomial, but the graphs of its coefficients131

are just those of this tridiagonal A(z) (so that the physical structure of Figure 1 is132

maintained). In order to do this, we define matrices with variables on the diagonal133

entries and the nonzero entries of A0 and A1 in Eq. (2.2) as follows (where the diagonal134

entries of As are xsj ’s and the off-diagonal entries are zero or ysj ’s). Thus, for n = 4,135

(2.3) A0 =


x0,1 y0,1 0 0
y0,1 x0,2 y0,2 0
0 y0,2 x0,3 y0,3
0 0 y0,3 x0,4

 , A1 =


x1,1 y1,1 0 0
y1,1 x1,2 y1,2 0
0 y1,2 x1,3 y1,3
0 0 y1,3 x1,4

 .136

More generally, the procedure is given in Definition 4.2.137

In the next example we will, again, consider two graphs and their associated138

matrices and then, in Example 2.3, we see how they can be related to a physical139

network of masses and springs.140

Example 2.2. Define the (loopless) graph G = (V1, E1) by V1 = {1, 2, 3, 4} with141

edges142

(2.4) E1 = {e2 = {1, 2}, e3 = {2, 3}, e4 = {3, 4}, e5 = {1, 3}},143
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and the graph H = (V2, E2) with V2 = {1, 2, 3, 4} and edges144

(2.5) E2 = {e2 = {1, 3}, e3 = {3, 4}}.145

Then we can visualize G and H as shown in Figure 3.146

G

1

2

3 4
−k4

−k3−k2

−k5

H

1

2

3 4
−d3−d2

Fig. 3. Graphs G and H.

Now define matrices K and D in Eq. (1.1) as follows:147

K =


k1 + k2 + k5 −k2 −k5 0
−k2 k2 + k3 −k3 0
−k5 −k3 k3 + k4 + k5 −k4

0 0 −k4 k4

 ,

D =


d1 + d2 0 −d2 0

0 0 0 0
−d2 0 d2 + d3 −d3

0 0 −d3 d3


(2.6)148

149

where all di and ki are positive. It is easily seen that the graph of K is G of Figure150

3, since G is a graph on the 4 vertices 1, 2, 3, and 4, and the {1, 2}, {1, 3}, {2, 3},151

and {3, 4} entries are all nonzero. Furthermore, G has edges {1, 2}, {1, 3}, {2, 3}, and152

{3, 4} corresponding to the nonzero entries of K. Similarly, one can check that the153

graph of D is H.154

Let G and H be the graphs shown in Figure 3, and let D and K be defined as in155

Eq. (2.6). Using Definition 4.2, we define matrices associated with the graphs:156

(2.7) A0 =


x0,1 y0,1 y0,2 0
y0,1 x0,2 y0,3 0
y0,2 y0,3 x0,3 y0,4
0 0 y0,4 x0,4

 , A1 =


x1,1 0 y1,1 0

0 x1,2 0 0
y1,1 0 x1,3 y1,2
0 0 y1,2 x1,4

 ,157

so that158

(2.8) K = A0(k1 + k2 + k3, k2 + k3, k3 + k4 + k5, k4,−k2,−k3,−k4,−k5),159

160

(2.9) D = A1(d1 + d2, 0, d2 + d3, d3, −d2, −d3).161

More generally, in this paper, structure is imposed on L(z) in Eq. (1.1) by requir-162

ing that M is positive definite and diagonal, D and K are real and symmetric, and163

nonzero entries in D and K are associated with the connectivity of nodes in a graph164

- as illustrated above.165
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6 K. HASSANI MONFARED AND P. LANCASTER

Example 2.3. (See [7].) A vibrating “mass/spring” system is sketched in Figure166

4. It is assumed that springs respond according to Hooke’s law and that damping is167

negatively proportional to the velocity.168

The quadratic polynomial representing the dynamical equations of the system has169

the form Eq. (1.1) with n = 4. The coefficient matrices corresponding to this system170

are the diagonal matrix171

(2.10) M = diag[m1,m2,m3,m4]172

and matrices D and K in Eq. (2.6). It is important to note that (for physical reasons)173

the mi, di, and ki parameters are all positive.174

m1

m2

m3 m4

k1

k2 k3

k4

k5

d1

d2

d3

f1(t)

f2(t)

f3(t)

f4(t)

x1 x2 x3
x4

Fig. 4. A four-degree-of-freedom mass-spring system.

Consider the corresponding system in Eq. (1.1) together with matrices in Eq. (2.6).175

The graphs of K and D are, respectively, G and H in Figure 3. Note that the two176

edges of graph H correspond to the two dampers between the masses (that is, dampers177

d2 and d3), and the four edges of G correspond to the springs between the masses178

(with constants k2, . . . , k5) in Figure 4. In contrast, d1 and k1 contribute to just one179

diagonal entry of L(z).180

Using the ideas developed above we study the following more general problem:181

A Structured Inverse Quadratic Problem:182

For a given set of 2n real numbers, Λ, and given graphs G and H on n vertices, do183

there exist real symmetric matrices M,D,K ∈ Rn×n such that the set of proper values184

of L(z) = Mz2 +Dz +K is Λ, M is diagonal and positive definite, the graph of D is185

H, and the graph of K is G? (Note, in particular, that the constructed systems are186

to have entirely real spectrum.)187

More generally, we study problems of this kind of higher degree - culminating in188

Theorem 5.2. A partial answer to the “quadratic” problem is provided in Corollary189

5.3. In particular, it will be shown that a solution exists when the given proper values190

are all distinct. The strategy is to start with a diagonal matrix polynomial with191
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INVERSE SPECTRAL PROBLEMS FOR LINKED VIBRATING SYSTEMS 7

the given proper values, and then perturb the off diagonal entries of the coefficient192

matrices so that they realize the given graph structure. In doing so the proper values193

change. Then we argue that there is an adjustment of the diagonal entries so that194

the resulting matrix polynomial has the given proper values. The last step involves195

using the implicit function theorem. Consequently, all the perturbations are small and196

the resulting matrix is close to a diagonal matrix. We solve the problem for matrix197

polynomials of general degree, k, and the quadratic problem is the special case k = 2.198

The authors of [7] deal with an inverse problem in which the graphs G and H199

are paths. That is, the corresponding matrices to be reconstructed are tridiagonal200

matrices where the superdiagonal and subdiagonal entries are nonzero as in Example201

2.1 (but not Example 2.2). In this particular problem only a few proper values and202

their corresponding proper vectors are given. For more general graphs, it is argued203

that “the issue of solvability is problem dependent and has to be addressed structure204

by structure.” This case, in which the graphs of the matrices are arbitrary and only205

a few proper values and their corresponding proper vectors are given, is considered in206

[13, 23, 24].207

3. The higher degree problem. The machinery required for the solution of208

our inverse quadratic problems is readily extended for use in the context of problems209

of higher degree. So we now focus on polynomials A(z) of general degree k ≥ 1 with210

A0, A1, . . . , Ak ∈ Rn×n and symmetric. With z ∈ C, the polynomials have the form211

(3.1) A(z) := Akz
k + · · ·+A1z +A0, Ak 6= 0,212

and we write213

(3.2) A(1)(z) = kAkz
k−1 + · · ·+ 2A2z +A1.214

Since Ak 6= 0, the matrix polynomial A(z) is said to have degree k. If detA(z) has215

an isolated zero at z0 of multiplicity m, then z0 is a proper value of A(z) of algebraic216

multiplicity m. A proper value with m = 1 is said to be simple.217

If z0 is a proper value of A(z) and the null space of A(z0) has dimension r, then218

z0 is a proper value of A(z) of geometric multiplicity r. If z0 is a proper value of A(z)219

and its algebraic and geometric multiplicities agree, then the proper value z0 is said220

to be semisimple.221

We assume that all the proper values and graph structures associated with A0,222

A1, . . ., Ak are given (as in Eq. (2.2), where k = 2). We are concerned only with223

the solvability of the problem. In particular, we show that when all the proper values224

are real and simple, the structured inverse quadratic problem is solvable for any given225

graph-structure. The constructed matrices, A0, A1, . . . , Ak, will then be real and sym-226

metric. More generally, our approach shows the existence of an open set of solutions227

for polynomials of any degree and the important quadratic problem (illustrated above)228

is a special case. Consequently, this shows that the solution is not unique.229

The techniques used here are generalizations of those appearing in [18], where the230

authors show the existence of a solution for the linear structured inverse eigenvalue231

problem. A different generalization of these techniques is used in [17] to solve the232

linear problem when the solution matrix is not necessarily symmetric, and this admits233

complex conjugate pairs of eigenvalues.234

First consider a diagonal matrix polynomial with some given proper values. The235

graph of each (diagonal) coefficient of the matrix polynomial is, of course, a graph with236

vertices but no edges (an empty graph). We suppose that such a graph is assigned for237
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8 K. HASSANI MONFARED AND P. LANCASTER

each coefficient. We perturb the off-diagonal entries (corresponding to the edges of the238

graphs) to nonzero numbers in such a way that the new matrix polynomial has given239

graphs (as with G and H in Examples 2.1 and 2.2). Of course, this will change the240

proper values of the matrix polynomial. Then we use the implicit function theorem to241

show that if the perturbations of the diagonal system are small, the diagonal entries242

can be adjusted so that the resulting matrix polynomial has the same proper values243

as the unperturbed diagonal system.244

In order to use the implicit function theorem, we need to compute the derivatives245

of a proper value of a matrix polynomial with respect to perturbations of one entry246

of one of the coefficient matrices. That will be done in this section. Then, in Section247

4, we construct a diagonal matrix polynomial with given proper values and show that248

a function that maps matrix polynomials to their proper values has a nonsingular249

Jacobian at this diagonal matrix. In Section 5, the implicit function theorem is used250

to establish the existence of a solution for the structured inverse problem.251

3.1. Symmetric perturbations of diagonal systems. Now let us focus on252

matrix polynomials A(z) of degree k with real and diagonal coefficients. The next253

lemma provides the derivative of a simple proper value of A(z) when the diagonal254

A(z) is subjected to a real symmetric perturbation. Thus, we consider255

(3.3) C(z, t) := A(z) + tB(z)256

where t ∈ R, |t| < ε for some ε > 0, and257

(3.4) B(z) = Bkz
k +Bk−1z

k−1 + · · ·+B1z +B0258

with BTs = Bs ∈ Rn×n for s = 0, 1, 2, . . . , k.259

Let us denote the derivative of a variable c with respect to the perturbation260

parameter t by ċ. Also, let er ∈ Rn be the rth column of the identity matrix (i.e. it261

has a 1 in the rth position and zeros elsewhere). The following lemma is well-known.262

A proof is provided for expository purposes.263

Lemma 3.1 (See Lemma 1 of [21]). Let k and n be fixed positive integers and let264

A(z) in Eq. (3.1) have real, diagonal, coefficients and a simple proper value z0. Let265

z(t) be the unique (necessarily simple) proper value of C(z, t) in Eq. (3.3) for which266

z(t)→ z0 as t→ 0. Then there is an r ∈ {1, 2, . . . , n} for which267

(3.5) ż(0) = −
(B(z0))rr(
A(1)(z0)

)
rr

.268

Proof. First observe that, because z0 is a simple proper value of A(z), there exists269

an analytic function of proper values z(t) for C(z, t) defined on a neighbourhood270

of t = 0 for which z(t) → z0 as t → 0. Furthermore, there is a corresponding271

differentiable proper vector v(t) of C(z, t) for which v(t)→ er for some r = 1, 2, . . . , n,272

as t → 0 (See Lemma 1 of [21], for example). Thus, in a neighbourhood of t = 0 we273

have274

(3.6) C(z(t), t)v(t) =
(
A(z) + tB(z)

)
v(t) = 0.275

Then observe that276

d

dt

(
zj(t)(Aj + tBj)

)
t=0

= jzj−1(t)ż(t)(Aj + tBj) + zj(t)Bj
t=0

277

= jzj−10 ż(0)Aj + zj0Bj .278279
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Thus, taking the first derivative of Eq. (3.6) with respect to t and then setting t = 0280

we have v(0) = er and281

(3.7)
(

(A(1)(z0)ż(0) +B(z0)
)
er +A(z0)v̇(0) = 0.282

Multiply by e>r from the left to get283

(3.8) e>r A
(1)(z0)ż(0)er + e>r B(z0)er + e>r A(z0)v̇(0) = 0.284

But e>r is a left proper vector of A(z0) corresponding to the proper value z0. Thus,285

e>r A(z0) = 0>, and (3.5) follows from (3.8).286

Now we can calculate the changes in a simple proper value of A(z) when an entry287

of just one of the coefficients, As, is perturbed – while maintaining symmetry.288

Definition 3.2. For 1 ≤ i, j ≤ n, define the symmetric n× n matrices Eij with:289

(a) exactly one nonzero entry, eii = 1, when j = i, and290

(b) exactly two nonzero entries, eij = eji = 1, when j 6= i.291

We perturb certain entries of A(z) in Eq. (3.1) (maintaining symmetry) by ap-292

plying Lemma 3.1 with B(z) = zmEij to obtain:293

Corollary 3.3. Let A(z) in Eq. (3.1) be diagonal with a simple proper value z0294

and corresponding unit proper vector er. Let zm(t) be the proper value of the perturbed295

system A(z) + t(zmEij), for some i, j ∈ {1, 2, . . . , n}, that approaches z0 as t → 0.296

Then297

(3.9) żm(0) =


−zm0(

A(1)(z0)
)
rr

when r = i = j,

0 when i 6= j.

298

Note also that, when we perturb off-diagonal entries of the diagonal matrix function299

A(z) in Eq. (3.1), we obtain żm(0) = 0.300

4. A special diagonal matrix polynomial.301

4.1. Construction. We construct an n × n real diagonal matrix polynomial302

A(z) of degree k, with given real proper values λ1, λ2, . . . , λnk. Then (see Eq. (4.9))303

we define a function f that maps the entries of A(z) to its proper values and show304

that the Jacobian of f when evaluated at the constructed A(z) is nonsingular. This305

construction prepares us for use of the implicit function theorem in the proof of the306

main result in the next section.307

Step 1: Let [k]r denote the sequence of k integers {(r−1)k+1, (r−1)k+2, . . . , rk},308

for r = 1, 2, . . . , n. Thus, [k]1 = {1, 2, . . . , k}, [k]2 = {k + 1, k + 2, . . . , 2k}, and309

[k]n = {(n− 1)k+ 1, (n− 1)k+ 2, . . . , nk}. We are to define an n×n diagonal matrix310

polynomial A(z) where, for i = 1, 2, . . . , n, the zeros of the i-th diagonal entry are311

exactly those proper values λq of A(z) with q ∈ [k]i.312

Step 2: Let αk,1, . . . , αk,n be assigned positive numbers. We use these numbers313

to define the n diagonal entries for each of k diagonal matrix polynomials (of size314

n× n). Then, for s = 0, 1, . . . , k − 1, and t = 1, 2, . . . , n we define315

(4.1) αs,t = (−1)k−sαk,t
∑
Q⊆[k]t
|Q|=k−s

∏
q∈Q

λq.316
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Thus, the summation is over all subsets of size k − s of the set of integers [k]t.317

Now define318

(4.2) As :=


αs,1 0 · · · 0

0 αs,2 · · · 0
...

...
. . .

...
0 · · · 0 αs,n

 for s = 0, 1, . . . , k,319

and the diagonal matrix polynomial320

(4.3) A(z) :=

k∑
s=0

Asz
s.321

Using (4.1) and the fact that αk,j 6= 0 for each j, we see that322

(4.4) A(z) =



αk,1
∏
q∈[k]1

(z − λq) 0 · · · 0

0 αk,2
∏
q∈[k]2

(z − λq) · · · 0

...
...

. . .
...

0 0 · · · αk,n
∏
q∈[k]n

(z − λq)


323

has degree k, and the assigned proper values are λ1, λ2, . . . , λnk. Note that the proper324

vector corresponding to λq is er for q ∈ [k]r. This completes our construction.325

In the following theorem we use Corollary 3.3 to examine perturbations of either326

a diagonal entry (i, i) of A(z) in Eq. (4.4), or two of the (zero) off-diagonal entries,327

(i, j) and (j, i), of A(z).328

Theorem 4.1. Let λ1, λ2, . . . , λnk be nk distinct real numbers, and let A(z) be329

defined as in Eq. (4.4). For a fixed m ∈ {0, 1, . . . , k−1} and with Eij as in Definition330

3.2, define331

P i,jm (z, t) = A(z) + zmtEij .332333

If 1 ≤ q ≤ nk, and λi,jq,m(t) is the proper value of P i,jm (z, t) that tends to λq as334

t→ 0, then335

(4.5)

(
∂λi,jq,m(t)

∂t

)
t=0

=


−λmq

A(1)(λq)rr
, if i = j = r and q ∈ [k]r,

0, otherwise.

336

Proof. It follows from the definition in Eq. (4.4) that detA(1)(λq) 6= 0 for all337

q = 1, 2, . . . , nk. That is, A(1)(λq)rr 6= 0, for r = 1, 2 . . . , n. Then Eq. (4.5) follows338

from Corollary 3.3.339

4.2. The role of graphs. We are going to construct matrices with variable340

entries, in order to adapt Corollary 3.3 to the case when the entries of the n × n341

diagonal matrix A in Eq. (4.4) are independent variables. A small example of such a342

matrix appears in Example 2.2.343
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Let G0, G1, · · · , Gk−1 be k graphs on n vertices and, for 0 ≤ s ≤ k − 1, let Gs344

have ms edges {i`, j`}ms

`=1 (k = 2 and n = 4 in Example 2.2). Define 2k vectors (2 per345

graph):346

(4.6)
xs = (xs,1, . . . , xs,n) ∈ Rn, ys = (ys,1, . . . , ys,ms) ∈ Rms , s = 0, 1, . . . , k − 1,347

and let m = m0 +m1 + · · ·+mk−1 be the total number of the edges of all Gs. (See348

Figure 3, where k = 2 and n = 4.)349

Definition 4.2. (The matrix of a graph - see Example 2.2) For s = 0, 1, · · · , k−350

1, let Ms = Ms(xs,ys) be an n × n symmetric matrix whose diagonal (i, i) entry is351

xs,i, the off-diagonal (i`, j`) and (j`, i`) entries are ys,` where {xi` , xj`} are edges of352

the graph Gs, and all other entries are zeros. We say that Ms is the matrix of the353

graph Gs.354

Now let Ak be the n × n diagonal matrix in Eq. (4.2) (the leading coefficient of355

A(z)) and, using Definition 4.2, define the n× n matrix polynomial356

(4.7) M = M(z,x,y) := zkAk +

k−1∑
s=0

zsMs(xs,ys),357

where x = (x0, . . . ,xk−1) ∈ Rkn and y = (y0, . . . ,yk−1) ∈ Rkms . Thus, the coeffi-358

cients of the matrix polynomial M(z,x,y) are defined in terms of k graphs, Gs, each359

having n vertices and ms edges, for s = 0, 1, . . . , k− 1. Note that, with the definition360

of the diagonal matrix polynomial A(z) in (4.4), we have361

(4.8) A(z) = M(z,α0,α1, . . . ,αk−1,0,0, . . . ,0),362

where αs = (αs,1, αs,2, . . . , αs,n), for each s = 0, 1, . . . , k − 1.363

Recall that the strategy is to364

a) perturb those off-diagonal (zero) entries of the diagonal matrixA(z) in Eq. (4.4)365

that correspond to edges in the given graphs Gs to small nonzero numbers,366

and then367

b) adjust the diagonal entries of the new matrix so that the proper values of the368

final matrix coincide with those of A(z).369

In order to do so, we keep track of the proper values of the matrix polynomial M in370

Eq. (4.7) by defining the following function:371

f : Rkn+m → Rkn372

(x,y) 7→ (λ1(M), λ2(M), . . . , λkn(M)) ,(4.9)373374

where λq(M) is the q-th smallest proper value of M(z,x,y).375

In order to show that, after small perturbations of the off-diagonal entries of A(z),376

its proper values can be recovered by adjusting the diagonal entries, we will make use377

of a version of the implicit function theorem (stated below as Theorem 5.1). But in378

order to use the implicit function theorem, we will need to show that the Jacobian of379

the function f in (4.9) is nonsingular at A(z).380

Let Jacx(f) denote the submatrix of the Jacobian matrix of f containing only the381

columns corresponding to the derivatives with respect to x variables. Then Jacx(f)382
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is383

(4.10)

∂λ1

∂x0,1
· · · ∂λ1

∂x0,n

...
. . .

...
∂λk

∂x0,1
· · · ∂λk

∂x0,n

· · ·

∂λ1

∂xk−1,1
· · · ∂λ1

∂xk−1,n

...
. . .

...
∂λk

∂xk−1,1
· · · ∂λk

∂xk−1,n

...
. . .

...

∂λ(n−1)k+1

∂x0,1
· · · ∂λ(n−1)k+1

∂x0,n

...
. . .

...
∂λnk

∂x0,1
· · · ∂λnk

∂x0,n

· · ·

∂λ(n−1)k+1

∂xk−1,1
· · · ∂λ(n−1)k+1

∂xk−1,n

...
. . .

...
∂λnk

∂xk−1,1
· · · ∂λnk

∂xk−1,n



,384

where each block is k × n, and there are n block rows and k block columns. Note385

that, for example, the (1, 1) entry of Jacx(f) is the derivative of the smallest proper386

value of M with respect to the variable in the (1, 1) position of M0, and similarly387

the (nk, nk) entry of Jacx(f) is the derivative of the largest proper value of M with388

respect to the variable in the (n, n) position of Mk−1.389

Then, using Theorem 4.1 we obtain:390

Corollary 4.3. Let A(z) be defined as in Eq. (4.4). Then391

(4.11)
∂λq
∂xs,r A(z)

=


−λsq(

A(1)(λq)
)
rr

, if q ∈ [k]r,

0, otherwise.

392

Proof. Note that the derivative is taken with respect to xs,r. That is, with respect393

to the (r, r) entry of the coefficient of zs. Thus, using the terminology of Theorem394

4.1, the perturbation to consider is P rrs (z, t). Then395

(4.12)

(
∂λr,rq,s(t)

∂t

)
t=0

=


−λsq(

A(1)(λq)
)
rr

, if q ∈ [k]r,

0, otherwise.

396

The main result of this section is as follows:397

Theorem 4.4. Let A(z) be defined as in Eq. (4.4), and f be defined by Eq. (4.9).398

Then Jacx(f)
A(z)

is nonsingular.399
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Proof. Corollary 4.3 implies that Jacx(f)
A(z)

is400

(4.13)

J = −



1

(A(1)(λ1))
11

0 · · · 0

...
...

. . .
...

1

(A(1)(λk))
11

0 · · · 0

· · ·

λk−1
1

(A(1)(λ1))
11

0 · · · 0

...
...

. . .
...

λk−1
k

(A(1)(λk))
11

0 · · · 0

...
. . .

...

0 · · · 0 1

(A(1)(λ(n−1)k+1))nn

...
. . .

...
...

0 · · · 0 1

(A(1)(λnk))
nn

· · ·

0 · · · 0
λk−1
(n−1)k+1

(A(1)(λ(n−1)k+1))nn

...
. . .

...
...

0 · · · 0
λk−1
nk

(A(1)(λnk))
nn



.401

Multiply J by −1, and multiply row q of J by
(
A(1)(λq)

)
rr

, for q = 1, 2, . . . , kn, and402

for the corresponding r, then reorder the columns to get403

(4.14)



1 λ1 · · · λk−11

1 λ2 · · · λk−12
...

...
. . .

...

1 λk · · · λk−1k

· · · O

...
. . .

...

O · · ·

1 λ(n−1)k+1 · · · λk−1(n−1)k+1

1 λ(n−1)k+2 · · · λk−1(n−1)k+2

...
...

. . .
...

1 λnk · · · λk−1nk



,404

which is a block diagonal matrix where each diagonal block is an invertible Vander-405

monde matrix since the λ’s are all distinct. Hence J is nonsingular.406

5. Existence Theorem. Now we use a version of the implicit function theorem407

to establish the existence of a solution for the structured inverse proper value problem408

(see [14, 19]).409

Theorem 5.1. Let F : Rs+r → Rs be a continuously differentiable function on410

an open subset U of Rs+r defined by411

(5.1) F (x,y) = (F1(x,y), F2(x,y), . . . , Fs(x,y)),412

where x = (x1, . . . , xs) ∈ Rs and y ∈ Rr. Let (a, b) be an element of U with a ∈ Rs413

and b ∈ Rr, and c be an element of Rs such that F (a, b) = c. If414

(5.2)

[
∂Fi
∂xj (a,b)

]
415
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is nonsingular, then there exist an open neighbourhood V of a and an open neigh-416

bourhood W of b such that V ×W ⊆ U and for each y ∈ W there is an x ∈ V with417

F (x,y) = c.418

Recall that we are looking for a matrix polynomial of degree k, with given proper419

values and a given graph for each non-leading coefficient. The idea is to start with the420

diagonal matrix Eq. (4.4) and perturb the zero off-diagonal entries corresponding to421

the edges of the graphs to some small nonzero numbers in a symmetric way. As long422

as the perturbations are sufficiently small, the implicit function theorem guarantees423

that the diagonal entries can be adjusted so that the proper values remain unchanged.424

Note also that, in the next statement, the assigned graphs G0, G1, · · · , Gk−1 de-425

termine the structure of the coefficients A0, · · · , Ak−1 of A(z).426

Theorem 5.2. Let λ1, λ2, . . . , λnk be nk distinct real numbers, let αk,1, . . . , αk,n427

be positive (nonzero) real numbers and, for 0 ≤ s ≤ k − 1, let Gs be a graph on n428

vertices.429

Then there is an n× n real symmetric matrix polynomial A(z) =
∑k
s=0Asz

s for430

which:431

(a) the proper values are λ1, λ2, . . . , λnk,432

(b) the leading coefficient is Ak = diag[αk,1, αk,2, . . . , αk,n],433

(c) for s = 0, 1, . . . , k − 1, the graph of As is Gs.434

Proof. Without loss of generality assume that λ1 < λ2 < · · · < λnk. Let Gs435

have ms edges for s = 0, 1, · · · , k − 1 and m = m0 + · · · + mk−1, the total number436

of edges. Let a = (α0,1, α0,2, . . . , αk,n) ∈ Rnk, where αs,r are defined as in Eq. (4.1),437

for s = 0, 1, . . . , k − 1 and r = 1, 2, . . . , n, and let 0 denote (0, 0, . . . , 0) ∈ Rm. Also,438

let A(z) be the diagonal matrix polynomial given by Eq. (4.4), which has the given439

proper values. Recall from Eq. (4.8) that A(z) = M(z,a,0). Let the function f be440

defined by Eq. (4.9). Then441

(5.3) f
A(z)

= f(z,a,0) = (λ1, λ2, . . . , λnk).442

By Theorem 4.4 the function f has a nonsingular Jacobian at A(z).443

By Theorem 5.1 (the implicit function theorem), there is an open neighbourhood444

U ⊆ Rnk of a and an open neighbourhood V ⊆ Rm of 0 such that for every ε ∈ V445

there is some ā ∈ U (close to a) such that446

(5.4) f(z, ā, ε) = (λ1, λ2, . . . , λnk).447

Choose ε ∈ V such that none of its entries are zero, and let Ā(z) = M(z, ā, ε).448

Then Ā(z) has the given proper values, and by definition, the graph of As is Gs, for449

s = 0, 1, . . . , k − 1.450

Note that the proof of Theorem 5.2 shows only that there is an m dimensional451

open set of matrices Ā(z) with the given graphs and proper values, and we say nothing452

about the size of this set. In the quadratic examples of Section 2, the parameter m453

becomes the total number of springs and dampers. In this context we have:454

Corollary 5.3. Given graphs G and H on n vertices, a positive definite diagonal455

matrix M , and 2n distinct real numbers λ1, λ2, . . . , λ2n, there are real symmetric456

matrices D and K whose graphs are G and H, respectively, and the quadratic matrix457

polynomial L(z) = Mz2 +Dz +K has proper values λ1, λ2, . . . , λ2n.458
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6. Numerical Examples. In this section we provide two numerical examples459

corresponding to the two systems of Examples 2.1 and 2.3. Both examples correspond460

to quadratic systems on four vertices, and in both cases the set of proper values is461

chosen to be the set of distinct real numbers {−2,−4, . . . ,−16}. The existence of462

matrix polynomials with given proper values and graphs given below is guaranteed463

by Corollary 5.3. For a numerical example, we choose all the nonzero off-diagonal464

entries to be 0.5. Then the multivariable Newton method is used to approximate the465

adjusted diagonal entries to arbitrary precision.466

We mention in passing that to say “off-diagonal entries are sufficiently small”467

means that Newton’s method starts with an initial point sufficiently close to a root.468

Also, since all the proper values are simple, the iterative method will converge locally.469

But the detailed analysis of convergence rates and radii of convergence are topics for470

a separate paper.471

In the following examples we provide an approximation of the coefficient matrices472

rounded to show ten significant digits. However, the only error in the computations473

is that of root finding, and in this case, that of Newton’s method, and the proper474

values of the resulting approximate matrix polynomial presented here are accurate to475

10 significant digits. The Sage code to carry the computations can be found on github476

[16].477

Example 6.1. Let Λ = {−2,−4,−6, . . . ,−16}, and let the graphs G and H be as478

shown in Figure 5. The goal is to construct a quadratic matrix polynomial479

(6.1) L(z) = Mz2 +Dz +K, M,D,K ∈ Rn×n,480

where the graph of D is H, the graph of K is G (in this case, as in Example 2.1, both481

are tridiagonal matrices), and the proper values of L(z) are given by the diagonal482

entries of Λ.

G : 1 2 3 4

H : 1 2 3 4

Fig. 5. Graphs of K and D of Eq. (2.2).

483

For simplicity, choose M to be the identity matrix. We start with a diagonal484

matrix polynomial A(z) whose proper values are the diagonal entries of Λ:485

(6.2) A(z) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 z2 +


6 0 0 0
0 14 0 0
0 0 22 0
0 0 0 30

 z +


8 0 0 0
0 48 0 0
0 0 120 0
0 0 0 224

486

Note that the (1, 1) entries are the coefficients of (x − 2)(x − 4), the (2, 2) entries487

are the coefficients of (x − 6)(x − 8) and so on. Then, perturb all the superdiagonal488

entries and subdiagonal entries of A(z) to 0.5 and, using Newton’s method, adjust489

the diagonal entries so that the proper values remain intact. An approximation of the490
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perturbed matrix polynomial L(z) is given by:491

(6.3)

D ≈


5.86747042533934 0.5 0 0

0.5 13.6131619433928 0.5 0
0 0.5 21.6432681505587 0.5
0 0 0.5 30.8760994807091

 ,492

493
(6.4)

K ≈


7.74561103829716 0.5 0 0

0.5 46.6592230163013 0.5 0
0 0.5 119.082534340571 0.5
0 0 0.5 240.017612939283

494

495

Example 6.2. Let Λ = {−2,−4,−6, . . . ,−16}, and let graphs G and H be as496

shown in Figure 6. The goal is to construct a quadratic matrix polynomial497

(6.5) L(z) = Mz2 +Dz +K, M,D,K ∈ Rn×n,498

where the graph of D is H, the graph of K is G, and the proper values of L(z) are499

the diagonlal entries of Λ.

G

1

2

3 4

H

1

2

3 4

Fig. 6. Graphs of K and D.

500
Choose M to be the identity matrix and start with the same diagonal matrix501

polynomial A(z) as in Eq. (6.2). Perturb those entries of A(z) corresponding to an502

edge to 0.5 and, using Newton’s method, adjust the diagonal entries so that the proper503

values are not perturbed. An approximation of the matrix polynomial L(z) is given504

by:505

(6.6)

D ≈


5.96497947933414 0 0.5 0

0 13.9962664239873 0 0
0.5 0 21.2163179014646 0.5
0 0 0.5 30.8224361952140

 ,506

507
(6.7)

K ≈


7.94384133116825 0.5 0.5 0

0.5 48.0284454626440 0.5 0
0.5 0.5 113.276104063793 0.5
0 0 0.5 239.067195294473

 .508

509

7. Conclusions. Linked vibrating systems consisting of a collection of rigid com-510

ponents connected by springs and dampers require the spectral analysis of matrix511

functions of the form Eq. (1.1). As we have seen, mathematical models for the analy-512

sis of such systems have been developed by Chu and Golub ([7, 8, 9]) and by Gladwell513

[15], among others. The mass distribution in these models is just that of the com-514

ponents, and elastic and dissipative properties are associated with the linkage of the515

parts, rather than the parts themselves.516
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Thus, for these models, the leading coefficient (the mass matrix) is a positive517

definite diagonal matrix. The damping and stiffness matrices have a zero-nonzero518

structure dependent on graphs (e.g. tridiagonal for a path) which, in turn, determine519

the connectivity of the components of the system.520

In this paper a technique has been developed for the solution of some inverse521

vibration problems in this context for matrix polynomials of a general degree k as in522

Eq. (3.1), and then the results are applied to the specific case of quadratic polynomi-523

als, with significant applications. Thus, given a real spectrum for the system, we show524

how corresponding real coefficient matrices M , D, and K can be found, and numer-525

ical examples are included. The technique applies equally well to some higher-order526

differential systems, and so the theory has been developed in that context.527

In principle, the method developed here could be extended to the designs of528

systems with some (possibly all) non-real proper values appearing in conjugate pairs529

as is done for the linear case in [17].530
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