An Analogue of Matrix Tree Theorem for Signless Laplacians

Keivan Hassani Monfared University of Victoria k1monfared@gmail.com

Joint work with: Sudipta Mallik

Northern Arizona University

Supported by NSERC.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- A: Adjacency matrix
- D: Diagonal matrix of the degrees
- L = D A: Laplacian matrix
- Q = D + A: Signless Laplacian matrix

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- A: Adjacency matrix
- D: Diagonal matrix of the degrees
- L = D A: Laplacian matrix \leftarrow Positive Semidefinite
- Q = D + A: Signless Laplacian matrix

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- A: Adjacency matrix
- D: Diagonal matrix of the degrees
- L = D A: Laplacian matrix \leftarrow Positive Semidefinite
- ► Q = D + A: Signless Laplacian matrix ← Also Positive Semidefinite

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- A: Adjacency matrix
- D: Diagonal matrix of the degrees
- L = D A: Laplacian matrix \leftarrow Positive Semidefinite
- ► Q = D + A: Signless Laplacian matrix ← Also Positive Semidefinite

of G.

Example

Theorem

- ► G: simple graph on n vertices
- Spectrum of L: $0 = \mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$
- Spectrum of Q: $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

Then G is bipartite if and only if

$$\{\mu_1,\mu_2,\ldots,\mu_n\}=\{\lambda_1,\lambda_2,\ldots,\lambda_n\}.$$

Theorem

► G: simple graph on n vertices

Then

- Multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of G.
- Multiplicity of 0 as an eigenvalue of Q is equal to the number of bipartite connected components of G.

Theorem (Matrix-Tree Theorem)

- G: simple graph on n vertices
- Spectrum of L: $0 = \mu_1 \le \mu_2 \le \cdots \le \mu_n$
- Spectrum of $Q: \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

Then the number of spanning trees of G, t(G) is

$$t(G) = \det(L(i)) = \frac{\mu_2 \cdots \mu_n}{n},$$

for all i = 1, 2, ..., n.

Theorem (Matrix-Tree Theorem)

- G: simple graph on n vertices
- Spectrum of L: $0 = \mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$
- Spectrum of $Q: \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

Then the number of spanning trees of G, t(G) is

$$t(G) = \det(L(i)) = \frac{\mu_2 \cdots \mu_n}{n},$$

for all i = 1, 2, ..., n.

Question

 $\det(Q(i)) = ?$

An observation

In general

 $\det(Q(i)) \neq \det(Q(j))$

For a given graph G on n vertices $1, 2, \ldots, n$ and m vertices $1, 2, \ldots, m$ let

► $N_{n \times m}$: Incidence matrix

► $N'_{n \times m}$ Incidence matrix of an orientation of the edges of *G*.

For a given graph G on n vertices 1, 2, ..., n and m vertices 1, 2, ..., m let

► *N*_{*n*×*m*}: Incidence matrix

► $N'_{n \times m}$ Incidence matrix of an orientation of the edges of *G*.

Example

For a given graph G on n vertices $1, 2, \ldots, n$ and m vertices $1, 2, \ldots, m$ let

► *N*_{*n*×*m*}: Incidence matrix

► $N'_{n \times m}$ Incidence matrix of an orientation of the edges of *G*.

Example

Then

$$L = N'N'^{\top},$$
$$Q = NN^{\top}.$$

Binet-Cauchy

Theorem

Let $m \leq n$. For $m \times n$ matrices A and B, we have

$$\det(AB^{\top}) = \sum_{S} \det(A(;S]) \det(B(;S]),$$

where the summation runs over all m-subsets S of $\{1, 2, ..., n\}$.

Binet-Cauchy

Theorem

Let $m \leq n$. For $m \times n$ matrices A and B, we have

$$\det(AB^{\top}) = \sum_{S} \det(A(;S]) \det(B(;S]),$$

where the summation runs over all m-subsets S of $\{1, 2, \ldots, n\}$.

Then

$$det(Q) = det(NN^{\top}) = \sum_{S} det(N(; S]) det(N(; S])$$
$$= \sum_{S} det(N(; S])^{2}.$$

Binet-Cauchy

Theorem

Let $m \leq n$. For $m \times n$ matrices A and B, we have

$$\det(AB^{\top}) = \sum_{S} \det(A(;S]) \det(B(;S]),$$

where the summation runs over all m-subsets S of $\{1, 2, ..., n\}$.

Then

$$det(Q) = det(NN^{\top}) = \sum_{S} det(N(; S]) det(N(; S])$$
$$= \sum_{S} det(N(; S])^{2}.$$

And

$$\det(Q(i)) = \sum_{S} \det(N(i;S])^2.$$

Definition: A TU-subgraph of a graph G is a spanning subgraph of G that its connected components are trees or odd-unicyclic graphs.

Definition: A TU-subgraph of a graph G is a spanning subgraph of G that its connected components are trees or odd-unicyclic graphs.

Lemma

If H is a TU-subgraph on n vertices with n - k edges consisting of c odd-unicyclic graphs and s trees, then s = k.

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

Let H be a tree with at least one edge and N be the incidence matrix of H. Then $det(N(i;)) = \pm 1$ for all vertices i of H.

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

Let H be a tree with at least one edge and N be the incidence matrix of H. Then $det(N(i;)) = \pm 1$ for all vertices i of H.

Lemma

Let H be a graph on n vertices and n-1 edges with incidence matrix N. If H has a connected component which is a tree and an edge which is not on the tree, then det(N(i;)) = 0 for all vertices i not on the tree.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and |S| = n - 1. Then one of the following is true. 1. H is a tree.

- 2. H has an even cycle and a vertex not on the cycle.
- 3. *H* has no even cycles, but *H* has a connected component with at least two odd cycles and at least two connected components which are trees.
- 4. *H* is a disjoint union of *c* odd unicyclic graphs and exactly one tree, i.e., *H* is a *TU*-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and |S| = n - 1. Then one of the following is true. 1. H is a tree.

 $\Rightarrow \det(N(i; S]) = \pm 1$

2. *H* has an even cycle and a vertex not on the cycle.

- 3. *H* has no even cycles, but *H* has a connected component with at least two odd cycles and at least two connected components which are trees.
- 4. *H* is a disjoint union of *c* odd unicyclic graphs and exactly one tree, i.e., *H* is a *TU*-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and |S| = n - 1. Then one of the following is true. 1. H is a tree.

 $\Rightarrow \det(N(i; S]) = \pm 1$

2. *H* has an even cycle and a vertex not on the cycle.

 $\Rightarrow \det(N(i; S]) = 0$

3. *H* has no even cycles, but *H* has a connected component with at least two odd cycles and at least two connected components which are trees.

 $\Rightarrow \det(N(i; S]) = 0$

4. *H* is a disjoint union of *c* odd unicyclic graphs and exactly one tree, i.e., *H* is a *TU*-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and |S| = n - 1. Then one of the following is true. 1. H is a tree.

 $\Rightarrow \det(N(i; S]) = \pm 1$

2. *H* has an even cycle and a vertex not on the cycle.

 $\Rightarrow \det(N(i; S]) = 0$

3. *H* has no even cycles, but *H* has a connected component with at least two odd cycles and at least two connected components which are trees.

 $\Rightarrow \det(N(i; S]) = 0$

4. *H* is a disjoint union of *c* odd unicyclic graphs and exactly one tree, i.e., *H* is a *TU*-graph.

 $\Rightarrow \begin{cases} \det(N(i; S]) = 0 ; i \text{ is not on the tree} \\ \det(N(i; S]) = \pm 2^c ; i \text{ is on the tree} \end{cases}$

Main result

Theorem

► G: a simple connected graph on n vertices 1, 2, ..., n

► *Q*: the signless Laplacian matrix of *G* Then

$$\det(Q(i)) = \sum_{H} 4^{c(H)},$$

where the summation runs over all TU-subgraphs H of G with n-1 edges consisting of a unique tree on vertex i and c(H) odd-unicyclic graphs.

Main result

Example

 $c(H_1) = 1$ $c(H_2) = 0$ $c(H_3) = 0$ $c(H_4) = 0$

$$\det(Q(1)) = \sum_{i=1}^{4} 4^{c(H_i)} = 4^1 + 4^0 + 4^0 + 4^0 = 7.$$

Main result

Example

 $c(H_1) = 1$ $c(H_2) = 0$ $c(H_3) = 0$ $c(H_4) = 0$

$$\det(Q(1)) = \sum_{i=1}^{4} 4^{c(H_i)} = 4^1 + 4^0 + 4^0 + 4^0 = 7.$$

 $\det(Q(2)) = 4^0 + 4^0 + 4^0 = 3.$

Main results

Corollary

► G: a simple connected graph on n vertices 1, 2, ..., n

Q the signless Laplacian matrix of G

• $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$: eigenvalues of Q

Then

(a) $t(G) \leq \det(Q(i))$

the equality holds if and only if all odd cycles of G contain vertex i.

(b)
$$t(G) \leq \frac{1}{n} \sum_{1 \leq i_1 < i_2 < \cdots < i_{n-1} \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_{n-1}}$$

the equality holds if and only if G is an odd cycle or a bipartite graph.

A final remark

Let G be a simple graph with signless Laplacian matrix Q. Then number of odd cycles of $G \leq \frac{\det(Q)}{4}$.

An Analogue of Matrix Tree Theorem for Signless Laplacians

Keivan Hassani Monfared University of Victoria k1monfared@gmail.com

Joint work with: Sudipta Mallik

Northern Arizona University

Supported by NSERC.

Thank you!