
An Analogue of Matrix Tree Theorem
for Signless Laplacians

Keivan Hassani Monfared
University of Victoria
k1monfared@gmail.com

Joint work with:
Sudipta Mallik

Northern Arizona University

Supported by NSERC.



Definitions & Notations

For a given graph G on n vertices 1, 2, . . . , n let

I A: Adjacency matrix

I D: Diagonal matrix of the degrees

I L = D − A: Laplacian matrix

← Positive Semidefinite

I Q = D + A: Signless Laplacian matrix

← Also Positive
Semidefinite

of G .

Example

1

2

3 4

A
0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


D

1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2


L

1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2


Q

1 1 0 0
1 3 1 1
0 1 2 1
0 1 1 2


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What is known

Theorem
I G: simple graph on n vertices

I Spectrum of L: 0 = µ1 ≤ µ2 ≤ · · · ≤ µn
I Spectrum of Q: λ1 ≤ λ2 ≤ · · · ≤ λn

Then G is bipartite if and only if

{µ1, µ2, . . . , µn} = {λ1, λ2, . . . , λn}.



What is known

Theorem
I G: simple graph on n vertices

Then

I Multiplicity of 0 as an eigenvalue of L is equal to the number
of connected components of G.

I Multiplicity of 0 as an eigenvalue of Q is equal to the number
of bipartite connected components of G.



What is known

Theorem (Matrix-Tree Theorem)

I G: simple graph on n vertices

I Spectrum of L: 0 = µ1 ≤ µ2 ≤ · · · ≤ µn
I Spectrum of Q: λ1 ≤ λ2 ≤ · · · ≤ λn

Then the number of spanning trees of G, t(G ) is

t(G ) = det(L(i)) =
µ2 · · ·µn

n
,

for all i = 1, 2, . . . , n.

Question

det(Q(i)) =?
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An observation

In general
det(Q(i)) 6= det(Q(j))

Example

1

2

3 4

1

2

3

4

Q
1 1 0 0
1 3 1 1
0 1 2 1
0 1 1 2


det(Q(1)) = 7

det(Q(2)) = 3

det(Q(3)) = 3

det(Q(4)) = 3



Definitions & Notations
For a given graph G on n vertices 1, 2, . . . , n and m vertices
1, 2, . . . ,m let

I Nn×m: Incidence matrix

I N ′n×m Incidence matrix of an orientation of the edges

of G .

Example

1

2

3 4

1

2

3

4

N

1 2 3 4
1
2
3
4


1 0 0 0
1 1 0 1
0 1 1 0
0 0 1 1



N ′

1 2 3 4
1
2
3
4


1 0 0 0
−1 1 0 1

0 −1 1 0
0 0 −1 −1



Then

I L = N ′N ′>,

I Q = NN>.



Definitions & Notations
For a given graph G on n vertices 1, 2, . . . , n and m vertices
1, 2, . . . ,m let

I Nn×m: Incidence matrix

I N ′n×m Incidence matrix of an orientation of the edges

of G .

Example

1

2

3 4

1

2

3

4

N

1 2 3 4
1
2
3
4


1 0 0 0
1 1 0 1
0 1 1 0
0 0 1 1



N ′

1 2 3 4
1
2
3
4


1 0 0 0
−1 1 0 1

0 −1 1 0
0 0 −1 −1



Then

I L = N ′N ′>,

I Q = NN>.



Definitions & Notations
For a given graph G on n vertices 1, 2, . . . , n and m vertices
1, 2, . . . ,m let

I Nn×m: Incidence matrix

I N ′n×m Incidence matrix of an orientation of the edges

of G .

Example

1

2

3 4

1

2

3

4

N

1 2 3 4
1
2
3
4


1 0 0 0
1 1 0 1
0 1 1 0
0 0 1 1



N ′

1 2 3 4
1
2
3
4


1 0 0 0
−1 1 0 1

0 −1 1 0
0 0 −1 −1



Then

I L = N ′N ′>,

I Q = NN>.



Binet-Cauchy

Theorem
Let m ≤ n. For m × n matrices A and B, we have

det(AB>) =
∑
S

det(A(;S ]) det(B(;S ]),

where the summation runs over all m-subsets S of {1, 2, . . . , n}.

Then

det(Q) = det(NN>) =
∑
S

det(N(;S ]) det(N(;S ])

=
∑
S

det(N(;S ])2.

And
det(Q(i)) =

∑
S

det(N(i ;S ])2.
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TU-subgraphs

Definition: A TU-subgraph of a graph G is a spanning subgraph
of G that its connected components are trees or odd-unicyclic
graphs.

Lemma
If H is a TU-subgraph on n vertices with n − k edges consisting of
c odd-unicyclic graphs and s trees, then s = k.



TU-subgraphs

Definition: A TU-subgraph of a graph G is a spanning subgraph
of G that its connected components are trees or odd-unicyclic
graphs.

Lemma
If H is a TU-subgraph on n vertices with n − k edges consisting of
c odd-unicyclic graphs and s trees, then s = k.



TU-subgraphs

Lemma
If G is an odd (resp. even) unicyclic graph, then the determinant
of its incidence matrix is ±2 (resp. zero).

Lemma
Let H be a tree with at least one edge and N be the incidence
matrix of H. Then det(N(i ; )) = ±1 for all vertices i of H.

Lemma
Let H be a graph on n vertices and n − 1 edges with incidence
matrix N. If H has a connected component which is a tree and an
edge which is not on the tree, then det(N(i ; )) = 0 for all vertices i
not on the tree.
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TU-subgraphs

Lemma
Let H be a spanning subgraph of a graph on n vertices with edges
indexed by S and |S | = n − 1. Then one of the following is true.

1. H is a tree.

⇒ det(N(i ; S ]) = ±1

2. H has an even cycle and a vertex not on the cycle.

⇒ det(N(i ;S ]) = 0

3. H has no even cycles, but H has a connected component with
at least two odd cycles and at least two connected
components which are trees.

⇒ det(N(i ; S ]) = 0

4. H is a disjoint union of c odd unicyclic graphs and exactly one
tree, i.e., H is a TU-graph.

⇒

{
det(N(i ; S ]) = 0 ; i is not on the tree

det(N(i ; S ]) = ±2c ; i is on the tree
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Main result

Theorem
I G: a simple connected graph on n vertices 1, 2, . . . , n

I Q: the signless Laplacian matrix of G

Then
det(Q(i)) =

∑
H

4c(H),

where the summation runs over all TU-subgraphs H of G with
n − 1 edges consisting of a unique tree on vertex i and c(H)
odd-unicyclic graphs.



Main result

Example

G
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3 4
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c(H1) = 1

H2
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c(H2) = 0

H3
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3 4
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2 4

c(H3) = 0

H4

1

2

3 4

1

2

3

c(H4) = 0

det(Q(1)) =
4∑

i=1

4c(Hi ) = 41 + 40 + 40 + 40 = 7.

det(Q(2)) = 40 + 40 + 40 = 3.
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Main results

Corollary

I G: a simple connected graph on n vertices 1, 2, . . . , n

I Q the signless Laplacian matrix of G

I λ1 ≤ λ2 ≤ · · · ≤ λn: eigenvalues of Q
Then

(a) t(G ) ≤ det(Q(i))
the equality holds if and only if all odd cycles of G contain
vertex i .

(b) t(G ) ≤ 1

n

∑
1≤i1<i2<···<in−1≤n

λi1λi2 · · ·λin−1

the equality holds if and only if G is an odd cycle or a
bipartite graph.



A final remark

Let G be a simple graph with signless Laplacian matrix Q. Then

number of odd cycles of G ≤ det(Q)

4
.
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