An Analogue of Matrix Tree Theorem for Signless Laplacians

Keivan Hassani Monfared University of Victoria k1monfared@gmail.com

> Joint work with: Sudipta Mallik

Northern Arizona University

Supported by NSERC.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- \blacktriangleright A: Adjacency matrix
- \triangleright D: Diagonal matrix of the degrees
- $L = D A$: Laplacian matrix
- \triangleright $Q = D + A$: Signless Laplacian matrix

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- \blacktriangleright A: Adjacency matrix
- \triangleright D: Diagonal matrix of the degrees
- \blacktriangleright $L = D A$: Laplacian matrix \leftarrow Positive Semidefinite
- \triangleright $Q = D + A$: Signless Laplacian matrix

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- \blacktriangleright A: Adjacency matrix
- \triangleright D: Diagonal matrix of the degrees
- \blacktriangleright $L = D A$: Laplacian matrix \leftarrow Positive Semidefinite
- \triangleright $Q = D + A$: Signless Laplacian matrix \leftarrow Also Positive **Semidefinite**

of G.

For a given graph G on n vertices $1, 2, \ldots, n$ let

- \blacktriangleright A: Adjacency matrix
- \triangleright D: Diagonal matrix of the degrees
- \blacktriangleright $L = D A$: Laplacian matrix \leftarrow Positive Semidefinite
- \triangleright $Q = D + A$: Signless Laplacian matrix \leftarrow Also Positive **Semidefinite**

of G.

Example

Theorem

- \blacktriangleright G: simple graph on n vertices
- \triangleright Spectrum of L: 0 = $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$
- **►** Spectrum of Q: $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$

Then G is bipartite if and only if

$$
\{\mu_1,\mu_2,\ldots,\mu_n\}=\{\lambda_1,\lambda_2,\ldots,\lambda_n\}.
$$

Theorem

 \triangleright G: simple graph on n vertices

Then

- \triangleright Multiplicity of 0 as an eigenvalue of L is equal to the number of connected components of G.
- \triangleright Multiplicity of 0 as an eigenvalue of Q is equal to the number of bipartite connected components of G.

Theorem (Matrix-Tree Theorem)

- \triangleright G: simple graph on n vertices
- ▶ Spectrum of L: $0 = \mu_1 < \mu_2 < \cdots < \mu_n$
- **►** Spectrum of Q: $\lambda_1 < \lambda_2 < \cdots < \lambda_n$

Then the number of spanning trees of G , $t(G)$ is

$$
t(G) = \det(L(i)) = \frac{\mu_2 \cdots \mu_n}{n},
$$

for all $i = 1, 2, \ldots, n$.

Theorem (Matrix-Tree Theorem)

- \blacktriangleright G: simple graph on n vertices
- ▶ Spectrum of L: $0 = \mu_1 < \mu_2 < \cdots < \mu_n$
- **►** Spectrum of Q: $\lambda_1 < \lambda_2 < \cdots < \lambda_n$

Then the number of spanning trees of G , $t(G)$ is

$$
t(G) = \det(L(i)) = \frac{\mu_2 \cdots \mu_n}{n},
$$

for all $i = 1, 2, \ldots, n$.

Question

 $det(Q(i)) = ?$

An observation

In general

 $det(Q(i)) \neq det(Q(j))$

For a given graph G on *n* vertices $1, 2, \ldots, n$ and *m* vertices $1, 2, \ldots, m$ let

 \triangleright $N_{n\times m}$: Incidence matrix

 $\blacktriangleright N'_{n \times m}$ Incidence matrix of an orientation of the edges of G.

For a given graph G on n vertices $1, 2, \ldots, n$ and m vertices $1, 2, \ldots, m$ let

 \triangleright $N_{n\times m}$: Incidence matrix

 $\blacktriangleright N'_{n \times m}$ Incidence matrix of an orientation of the edges of G.

Example

For a given graph G on n vertices $1, 2, \ldots, n$ and m vertices $1, 2, \ldots, m$ let

 \triangleright $N_{n\times m}$: Incidence matrix

 $\blacktriangleright N'_{n \times m}$ Incidence matrix of an orientation of the edges of G.

Example

Then

$$
L = N' N'^{\top},
$$

$$
Q = N N^{\top}.
$$

Binet-Cauchy

Theorem

Let $m < n$. For $m \times n$ matrices A and B, we have

$$
\det(AB^{\top}) = \sum_{S} \det(A(:,S]) \det(B(:,S]),
$$

where the summation runs over all m-subsets S of $\{1, 2, ..., n\}$.

Binet-Cauchy

Theorem

Let $m < n$. For $m \times n$ matrices A and B, we have

$$
\det(AB^{\top}) = \sum_{S} \det(A(:,S]) \det(B(:,S]),
$$

where the summation runs over all m-subsets S of $\{1, 2, ..., n\}$.

Then

$$
\begin{aligned} \det(Q) &= \det(NN^\top) = \sum_S \det(N(:,S]) \det(N(:,S]) \\ &= \sum_S \det(N(:,S])^2. \end{aligned}
$$

Binet-Cauchy

Theorem

Let $m < n$. For $m \times n$ matrices A and B, we have

$$
\det(AB^{\top}) = \sum_{S} \det(A(:,S]) \det(B(:,S]),
$$

where the summation runs over all m-subsets S of $\{1, 2, ..., n\}$.

Then

$$
\begin{aligned} \det(Q) &= \det(NN^\top) = \sum_S \det(N(:,S]) \det(N(:,S]) \\ &= \sum_S \det(N(:,S])^2. \end{aligned}
$$

And

$$
\det(Q(i)) = \sum_{S} \det(N(i;S])^{2}.
$$

Definition: A TU-subgraph of a graph G is a spanning subgraph of G that its connected components are trees or odd-unicyclic graphs.

Definition: A TU-subgraph of a graph G is a spanning subgraph of G that its connected components are trees or odd-unicyclic graphs.

Lemma

If H is a TU-subgraph on n vertices with $n - k$ edges consisting of c odd-unicyclic graphs and s trees, then $s = k$.

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

Let H be a tree with at least one edge and N be the incidence matrix of H. Then det($N(i;)$) = ± 1 for all vertices i of H.

Lemma

If G is an odd (resp. even) unicyclic graph, then the determinant of its incidence matrix is ± 2 (resp. zero).

Lemma

Let H be a tree with at least one edge and N be the incidence matrix of H. Then det($N(i;)$) = ± 1 for all vertices i of H.

Lemma

Let H be a graph on n vertices and $n - 1$ edges with incidence matrix N. If H has a connected component which is a tree and an edge which is not on the tree, then $det(N(i;)) = 0$ for all vertices i not on the tree.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and $|S| = n - 1$. Then one of the following is true. 1. H is a tree.

- 2. H has an even cycle and a vertex not on the cycle.
- 3. H has no even cycles, but H has a connected component with at least two odd cycles and at least two connected components which are trees.
- 4. H is a disjoint union of c odd unicyclic graphs and exactly one tree, i.e., H is a TU-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and $|S| = n - 1$. Then one of the following is true. 1. H is a tree.

 \Rightarrow det($N(i; S)$) = ± 1

2. H has an even cycle and a vertex not on the cycle.

- 3. H has no even cycles, but H has a connected component with at least two odd cycles and at least two connected components which are trees.
- 4. H is a disjoint union of c odd unicyclic graphs and exactly one tree, i.e., H is a TU-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and $|S| = n - 1$. Then one of the following is true. 1. H is a tree.

 \Rightarrow det($N(i; S)$) = ± 1

2. H has an even cycle and a vertex not on the cycle.

 \Rightarrow det($N(i; S)$) = 0

3. H has no even cycles, but H has a connected component with at least two odd cycles and at least two connected components which are trees.

 \Rightarrow det($N(i; S)$) = 0

4. H is a disjoint union of c odd unicyclic graphs and exactly one tree, i.e., H is a TU-graph.

Lemma

Let H be a spanning subgraph of a graph on n vertices with edges indexed by S and $|S| = n - 1$. Then one of the following is true. 1. H is a tree.

 \Rightarrow det($N(i; S)$) = ± 1

2. H has an even cycle and a vertex not on the cycle.

 \Rightarrow det($N(i; S)$) = 0

3. H has no even cycles, but H has a connected component with at least two odd cycles and at least two connected components which are trees.

 \Rightarrow det($N(i; S)$) = 0

4. H is a disjoint union of c odd unicyclic graphs and exactly one tree, i.e., H is a TU-graph.

> ⇒ $\int det(N(i; S)) = 0$; *i* is not on the tree $\det(N(i; S]) = \pm 2^c$; i is on the tree

Main result

Theorem

 \triangleright G: a simple connected graph on n vertices $1, 2, \ldots, n$

 \triangleright Q: the signless Laplacian matrix of G

Then

$$
\det(Q(i))=\sum_{H}4^{c(H)},
$$

where the summation runs over all TU-subgraphs H of G with $n-1$ edges consisting of a unique tree on vertex i and $c(H)$ odd-unicyclic graphs.

Main result

Example

$$
\det(Q(1)) = \sum_{i=1}^{4} 4^{c(H_i)} = 4^1 + 4^0 + 4^0 + 4^0 = 7.
$$

Main result

Example

det($Q(2)$) = $4^0 + 4^0 + 4^0 = 3$.

Main results

Corollary

 \triangleright G: a simple connected graph on n vertices 1, 2, ..., n

 \triangleright Q the signless Laplacian matrix of G

 \blacktriangleright $\lambda_1 < \lambda_2 < \cdots < \lambda_n$: eigenvalues of Q

Then

(a) $t(G) \leq det(Q(i))$

the equality holds if and only if all odd cycles of G contain vertex i.

(b)
$$
t(G) \leq \frac{1}{n} \sum_{1 \leq i_1 < i_2 < \dots < i_{n-1} \leq n} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_{n-1}}
$$

the equality holds if and only if G is an odd cycle or a bipartite graph.

A final remark

Let G be a simple graph with signless Laplacian matrix Q . Then number of odd cycles of $G \leq \frac{\det(Q)}{4}$ $\frac{1}{4}$.

An Analogue of Matrix Tree Theorem for Signless Laplacians

Keivan Hassani Monfared University of Victoria k1monfared@gmail.com

Joint work with: Sudipta Mallik

Northern Arizona University

Thank you!

Supported by NSERC.