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1. Introduction

For a simple graph G on n vertices 1, 2, . . . , n and m edges 1, 2, . . . , m we define its 
degree matrix D, adjacency matrix A, and incidence matrix N as follows:

1. D = [dij ] is an n × n diagonal matrix where dii is the degree of the vertex i in G for 
i = 1, 2, . . . , n.

2. A = [aij ] is an n ×n matrix with zero diagonals where aij = 1 if vertices i and j are 
adjacent in G and aij = 0 otherwise for i, j = 1, 2, . . . , n.

3. N = [nij ] is an n ×m matrix whose rows are indexed by vertices and columns are 
indexed by edges of G. The entry nij = 1 whenever vertex i is incident with edge j
(i.e., vertex i is an endpoint of edge j) and nij = 0 otherwise.

We define the Laplacian matrix L and signless Laplacian matrix Q to be L = D −A

and Q = D +A, respectively. It is well-known that both L and Q have nonnegative real 
eigenvalues [1, Sec. 1.3]. Note the relation between the spectra of L and Q:

Theorem 1.1. [1, Prop. 1.3.10] Let G be a simple graph on n vertices. Let L and Q be the 
Laplacian matrix and the signless Laplacian matrix of G, respectively, with eigenvalues 
0 = μ1 ≤ μ2 ≤ · · · ≤ μn for L, and λ1 ≤ λ2 ≤ · · · ≤ λn for Q. Then G is bipartite if and 
only if {μ1, μ2, . . . , μn} = {λ1, λ2, . . . , λn}.

Theorem 1.2. [2, Prop. 2.1] The smallest eigenvalue of the signless Laplacian of a con-
nected graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple 
eigenvalue.

We use the following notation for submatrices of an n ×m matrix M : for sets I ⊂
{1, 2, . . . , n} and J ⊂ {1, 2, . . . , m},

• M [I; J ] denotes the submatrix of M whose rows are indexed by I and columns are 
indexed by J .

• M(I; J) denotes the submatrix of M obtained by removing the rows indexed by I
and removing the columns indexed by J .

• M(I; J ] denotes the submatrix of M whose columns are indexed by J , and obtained 
by removing rows indexed by I.

We often list the elements of I and J , separated by commas in this submatrix notation, 
rather than writing them as sets. For example, M(2; 3, 7, 8] is a (n − 1) × 3 matrix 
whose rows are the same as the rows of M with the second row deleted and columns 
are respectively the third, seventh, and eighth columns of M . Moreover, if I = J , we 
abbreviate M(I; J) and M [I; J ] as M(I) and M [I] respectively. Also we abbreviate 
M(∅; J ] and M(I; ∅) as M(; J ] and M(I; ) respectively.
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Fig. 1. Paw G and its signless Laplacian matrix Q.

A spanning tree of G is a connected subgraph of G on all n vertices with minimum 
number of edges which is n − 1 edges. The number of spanning trees in a graph G is 
denoted by t(G) and is given by Matrix Tree Theorem:

Theorem 1.3 (Matrix Tree Theorem). [1, Prop. 1.3.4] Let G be a simple graph on n
vertices and L be the Laplacian matrix of G with eigenvalues 0 = μ1 ≤ μ2 ≤ · · · ≤ μn. 
Then the number t(G) of spanning trees of G is

t(G) = det (L(i)) = μ2 · μ3 · · ·μn

n
,

for all i = 1, 2, . . . , n.

We explore if there is an analog of the Matrix Tree Theorem for the signless Laplacian 
matrix Q. First note that unlike det (L(i)), det (Q(i)) is not necessarily the same for all 
i as illustrated in the following example.

Example 1.4. For the paw graph G with its signless Laplacian matrix Q in Fig. 1, 
det (Q(1)) = 7 �= 3 = det (Q(2)) = det (Q(3)) = det (Q(4)).

The Matrix Tree Theorem can be proved by the Cauchy–Binet formula:

Theorem 1.5 (Cauchy–Binet). [1, Prop. 1.3.5] Let m ≤ n. For m ×n matrices A and B, 
we have

det(ABT ) =
∑
S

det(A(;S]) det(B(;S]),

where the summation runs over 
(
n
m

)
m-subsets S of {1, 2, . . . , n}.

The following observation provides a decomposition of the signless Laplacian matrix 
Q which enables us to apply the Cauchy–Binet formula on it.

Observation 1.6. Let G be a simple graph on n ≥ 2 vertices with m edges, and m ≥
n − 1. Suppose N and Q are the incidence matrix and signless Laplacian matrix of G, 
respectively. Then
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(a) Q = NNT ,
(b) Q(i) = N(i; )N(i; )T , i = 1, 2, . . . , n, and
(c) det(Q(i)) = det(N(i; )N(i; )T ) =

∑
S det(N(i; S])2, where the summation runs over 

all (n − 1)-subsets S of {1, 2, . . . , m} (by Cauchy–Binet formula 1.5).

2. Principal minors of signless Laplacians

In this section we find a combinatorial formula for a principal minor det(Q(i)) for the 
signless Laplacian matrix Q of a given graph G. We mainly use Observation 1.6(c) given 
by Cauchy–Binet formula which involves determinant of submatrices of incidence matri-
ces. This approach is completely different from the methods applied for related spectral 
results in [2]. But we borrow the definition of TU -subgraphs from [2] slightly modified as 
follows: A TU -graph is a graph whose connected components are trees or odd-unicyclic 
graphs. A TU -subgraph of G is a spanning subgraph of G that is a TU -graph. The 
following lemma finds the number of trees in a TU -graph.

Lemma 2.1. If G is a TU -graph on n vertices with n −k edges consisting of c odd-unicyclic 
graphs and s trees, then s = k.

Proof. Suppose the number vertices of the cycles are n1, n2, . . . , nc and that of the trees 
are t1, t2, . . . , ts. Then the total number of edges is

n− k =
c∑

i=1
ni +

s∑
i=1

(ti − 1) = n− s

which implies s = k. �
Now we find the determinant of incidence matrices of some special graphs in the 

following lemmas.

Lemma 2.2. If G is an odd (resp. even) cycle, then the determinant of its incidence 
matrix is ±2 (resp. zero).

Proof. Let G be a cycle with the incidence matrix N . Then up to permutation we have

N = PN ′Q = P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 1
1 1 0 · · · 0 0

0 1 1
. . .

...
...

...
. . . . . . . . . . . .

...
...

...
. . . . . . 1 0

0 · · · · · · 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q,
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for some permutation matrices P and Q. By a cofactor expansion across the first row we 
have

det(N) = det(P ) det(N ′) det(Q) = (±1)(1 + (−1)n+1)(±1).

If n is odd (resp. even), then det(N) = ±2 (resp. zero). �
Lemma 2.3. If G is an odd unicyclic (resp. even unicyclic) graph, then the determinant 
of its incidence matrix is ±2 (resp. 0).

Proof. Let G be a unicyclic graph with incidence matrix N and t vertices not on the 
cycle. We prove the statement by induction on t. If t = 0, then G is an odd (resp. even) 
cycle and then det(Ni) = ±2 (resp. 0) by Lemma 2.2. Assume the statement holds for 
some t ≥ 0. Let G be a unicyclic graph with t + 1 vertices not on the cycle. Then G has 
a pendant vertex, say vertex i. The vertex i is incident with exactly one edge of G, say 
el = {i, j}. Then ith row of N has only one nonzero entry which is the (i, l)th entry and 
it is equal to 1. To find det(N) we have a cofactor expansion across the ith row and get

det(N) = ±1 ·
(
± det(N(i; l))

)
.

Note that N(i; l) is the incident matrix of G(i), which is a unicyclic graph with t vertices 
not on the cycle. By induction hypothesis, det(N(i; l)) = ±2 (resp. 0). Thus det(N) =
±1 ·

(
± det(N(i; l))

)
= ±2 (resp. 0). �

By a similar induction on the number of pendant vertices we get the following result.

Lemma 2.4. Let H be a tree with at least one edge and N be the incidence matrix of H. 
Then det(N(i; )) = ±1 for all vertices i of H.

Lemma 2.5. Let H be a graph on n vertices and n − 1 edges with incidence matrix N . If 
H has a connected component which is a tree and an edge which is not on the tree, then 
det(N(i; )) = 0 for all vertices i not on the tree.

Proof. Let H have a connected component T which is a tree and an edge ej which is not 
on T . Suppose i is a vertex of G that is not on T . If T consists of just one vertex, then the 
corresponding row in N(i; ) is a zero row giving det(N(i; )) = 0. Suppose T has at least 
two vertices. Now consider the square submatrix N ′ of N(i; ) with rows corresponding to 
vertices of T and columns corresponding to edges of T together with ej . Then the column 
of N ′ corresponding to ej is a zero row giving det(N ′) = 0. Since entries in rows of Ni[S]
corresponding to T that are outside of N ′ are zero, the rows of N(i; ) corresponding to 
T are linearly dependent and consequently det(N(i; )) = 0. �

Now we break down different scenarios that can happen to a graph with n vertices 
and m = n − 1 edges.
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Proposition 2.6. Let H be a graph on n vertices and m = n − 1 edges. Then one of the 
following is true for H.

1. H is a tree.
2. H has an even cycle and a vertex not on the cycle.
3. H has no even cycles, but H has a connected component with at least two odd cycles 

and at least two connected components which are trees.
4. H is a disjoint union of odd unicyclic graphs and exactly one tree, i.e., H is a 

TU -graph.

Proof. If H is connected then it is a tree. This implies Case 1. Now assume H is not 
connected. If H has no cycles, then it is a forest with at least two connected components. 
This would imply that m < n − 2, contradicting the assumption that m = n − 1. Thus 
H has at least one cycle. Suppose H has t ≥ 2 connected components Hi with mi edges 
and ni vertices, where the first k of them have at least a cycle and the rest are trees. For 
i = 1, . . . , k, Hi has mi ≥ ni. Note that

−1 = m− n =
t∑

i=1
(mi − ni) =

k∑
i=1

(mi − ni) +
t∑

i=k+1

(mi − ni) (2.1)

Since Hi has a cycle for i = 1, . . . , k and Hi is a tree for i = k + 1, . . . , t,

� :=
k∑

i=1
(mi − ni) ≥ 0,

and

t∑
i=k+1

(mi − ni) = −(t− k).

Then t −k = � +1 by (2.1). In other words, in order to make up for the extra edges in the 
connected components with cycles, H has to have exactly � + 1 connected components 
which are trees.

If H has an even cycle, then � ≥ 0 and hence t − k ≥ 1. This means there is at least 
one connected component which is tree and it contains a vertex which is not in the cycle. 
This implies Case 2. Otherwise, all of the cycles of H are odd. If it has more than one 
cycle in a connected component, then � ≥ 1 and thus t − k ≥ 2. This implies Case 3. 
Otherwise, each Hi with i = 1, . . . , k has exactly one cycle in it, which implies � = 0, 
and then t − k = 1. This implies Case 4. �
Theorem 2.7. Let G be a simple connected graph on n ≥ 2 vertices and m edges with the 
incidence matrix N . Let i be an integer from {1, 2, . . . , n}. Let S be an (n − 1)-subset of 
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{1, 2, . . . , m} and H be a spanning subgraph of G with edges indexed by S. Then one of 
the following holds for H.

1. H is a tree. Then det(N(i; S]) = ±1.
2. H has an even cycle and a vertex not on the cycle. Then det(N(i; S]) = 0.
3. H has no even cycles, but it has a connected component with at least two odd cycles 

and at least two connected components which are trees. Then det(N(i; S]) = 0.
4. H is a TU -subgraph of G consisting of c odd-unicyclic graphs U1, U2, . . . , Uc and a 

unique tree T . If i is a vertex of Uj for some j = 1, 2, . . . , c, then det(N(i; S]) = 0. 
If i is a vertex of T , then det(N(i; S]) = ±2c.

Proof. Suppose vertices and edges of G are 1, 2, . . . , n and e1, e2, . . . , em, respectively. 
Note that m ≥ n − 1 since G is connected.

1. Suppose H is a tree. Since n ≥ 2, H has an edge. Then by Lemma 2.4, det(N(i; S]) =
±1.

2. Suppose H contains an even cycle C as a subgraph and a vertex j not on C.

Case 1. Vertex i is not in C.
Then the square submatrix N ′ of N(i; S] corresponding to C has determinant zero by 
Lemma 2.3. Since entries in columns of N(i; S] corresponding to C that are outside 
of N ′ are zero, the columns of N(i; S] corresponding to C are linearly dependent and 
consequently det(N(i; S]) = 0.

Case 2. Vertex i is in C.
Since i is in C, we have j �= i. Consider the square submatrix N ′ of N(i; S] that 
has rows corresponding to vertex j and vertices of C excluding i and columns cor-
responding to edges of C. Since vertex j is not on C, the row of N ′ corresponding 
to vertex j is a zero row and consequently det(N ′) = 0. Since entries in columns 
of Ni[S] corresponding to C that are outside of N ′ are zero, the columns of N(i; S]
corresponding to C are linearly dependent and consequently det(N(i; S]) = 0.

3. Suppose H has no even cycles, but it has a connected component with at least two 
odd cycles and at least two connected components which are trees. Then vertex i is 
not in one of the trees. Then det(N(i; S]) = 0 by Lemma 2.5.

4. Suppose H is a TU -subgraph of G consisting of c odd-unicyclic graphs U1, U2, . . . , Uc

and a unique tree T . If i is a vertex of Uj for some j = 1, . . . , c, then det(N(i; S]) = 0
by Lemma 2.5. If i is a vertex of the tree T , then N(i; S] is a direct sum of incidence 
matrices of odd-unicyclic graphs U1, U2, . . . , Uc and the incidence matrix of the tree 
T with one row deleted (which does not exist when T is a tree on the single vertex i). 
By Lemma 2.3 and 2.4, det(N(i; S]) = (±2)c · (±1) = ±2c. �

The preceding results are summarized in the following theorem.
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Theorem 2.8. Let G be a simple connected graph on n ≥ 2 vertices and m edges with the 
incidence matrix N . Let i be an integer from {1, 2, . . . , n}. Let S be an (n − 1)-subset of 
{1, 2, . . . , m} and H be a spanning subgraph of G with edges indexed by S.

(a) If H is not a TU -subgraph of G, then det(N(i; S]) = 0.
(b) Suppose H is a TU -subgraph of G consisting of c odd-unicyclic graphs U1, U2, . . . , Uc

and a unique tree T . If i is a vertex of Uj for some j = 1, 2, . . . , c, then 
det(N(i; S]) = 0. If i is a vertex of T , then det(N(i; S]) = ±2c.

For a TU -subgraph H of G, the number of connected components that are odd-
unicyclic graphs is denoted by c(H). So a TU -subgraph H on n − 1 edges with c(H) = 0
is a spanning tree of G.

Theorem 2.9. Let G be a simple connected graph on n ≥ 2 vertices 1, 2, . . . , n with the 
signless Laplacian matrix Q. Then

det(Q(i)) =
∑
H

4c(H),

where the summation runs over all TU -subgraphs H of G with n − 1 edges consisting of 
a unique tree on vertex i and c(H) odd-unicyclic graphs.

Proof. By Observation 1.6, we have,

det(Q(i)) =
∑
S

det(N(i;S])2,

where the summation runs over all (n − 1)-subsets S of {1, 2, . . . , m}. By Theorem 2.8, 
we have,

det(Q(i)) =
∑
S

det(N(i;S])2 =
∑
H

(±2c(H))2 =
∑
H

4c(H),

where the summation runs over all TU -subgraphs H of G with n − 1 edges consisting of 
a unique tree on vertex i and c(H) odd-unicyclic graphs. �
Example 2.10. Consider the Paw G and its signless Laplacian matrix Q in Fig. 1. To 
determine det(Q(1)), consider the TU -subgraphs of G with 3 edges consisting of a unique 
tree on vertex 1: H1, H2, H3, H4 in Fig. 2. Note c(H1) = c(H2) = c(H3) = 0 and 
c(H4) = 1. Then by Theorem 2.9,

det(Q(1)) =
∑
H

4c(H) = 4c(H1) + 4c(H2) + 4c(H3) + 4c(H4) = 40 + 40 + 40 + 41 = 7.
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Fig. 2. TU-subgraphs of Paw G with 3 edges consisting of a unique tree on vertex 1.

Corollary 2.11. Let G be a simple connected graph on n ≥ 2 vertices 1, 2, . . . , n. Let Q
be the signless Laplacian matrix of G with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Then

(a) det(Q(i)) ≥ t(G), the number of spanning trees of G, where the equality holds if and 
only if all odd cycles of G contain vertex i.

(b)

1
n

∑
1≤i1<i2<···<in≤n

λi1λi2 · · ·λin−1 = 1
n

n∑
i=1

det(Q(i)) ≥ t(G),

where the equality holds if and only if G is an odd cycle or a bipartite graph.

Proof. (a) First note that a TU -subgraph H on n −1 edges with c(H) = 0 is a spanning 
tree of G. Then det(Q(i)) =

∑
H 4c(H) ≥

∑
T 40, where the sum runs over all span-

ning trees T of G containing vertex i. So det(Q(i)) is greater than or equal to the 
number of spanning trees of G containing vertex i. Since each spanning tree contains 
vertex i, det(Q(i)) ≥ t(G) where the equality holds if and only if all odd-unicyclic 
subgraphs of G contain vertex i by Theorem 2.9. Finally note that all odd-unicyclic 
subgraphs of G contain vertex i if and only if all odd cycles of G contain vertex i.

(b) The first equality follows from the well-known linear algebraic result

∑
1≤i1<i2<···<in≤n

λi1λi2 · · ·λin−1 =
n∑

i=1
det(Q(i)).

Now by (a) det(Q(i)) ≥ t(G) where the equality holds if and only if all odd cycles 
of G contain vertex i. Then

1
n

n∑
i=1

det(Q(i)) ≥ t(G)

where the equality holds if and only if det(Q(i)) = t(G) for all i = 1, 2, . . . , n. So 
the equality holds if and only if all odd cycles of G contain every vertex of G which 
means G is an odd cycle or a bipartite graph (G has no odd cycles). �
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3. Number of odd cycles in a graph

In this section we find a combinatorial formula for det(Q) for the signless Laplacian 
matrix Q of a given graph G. As a corollary we show that the number of odd cycles in 
G is less than or equal to det(Q)

4 .

Proposition 3.1. Let H be a graph on n vertices and m = n edges. Then one of the 
following is true for H.

1. H has a connected component which is a tree.
2. All connected components of H are unicyclic and at least one of them is even-

unicyclic.
3. All connected components of H are odd-unicyclic.

Proof. Suppose H has t ≥ 2 connected components Hi with mi edges and ni vertices, 
where the first k of them have at least one cycle and the rest are trees. For i = 1, . . . , k, 
Hi has mi ≥ ni. Note that

0 = m− n =
t∑

i=1
(mi − ni) =

k∑
i=1

(mi − ni) +
t∑

i=k+1

(mi − ni) (3.1)

Since Hi has a cycle for i = 1, . . . , k and Hi is a tree for i = k + 1, . . . , t,

� :=
k∑

i=1
(mi − ni) ≥ 0,

and

t∑
i=k+1

(mi − ni) = −(t− k).

Then t − k = � by (3.1). If H has a connected component which is a tree, we have 
Case 1. Otherwise t − k = 0 which implies � =

∑k
i=1(mi − ni) = 0. Then mi = ni, 

for i = 1, 2, . . . , k, i.e., all connected components of H are unicyclic. If one of the uni-
cyclic components is even-unicyclic, we get Case 2. Otherwise all connected components 
of H are odd-unicyclic which is Case 3. Finally if H is connected, it is unicyclic and 
consequently it is Case 2 or 3. �
Lemma 3.2. Let H be a graph on n vertices and n edges with incidence matrix N . If H
has a connected component which is a tree and an edge which is not on the tree, then 
det(N) = 0.
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Proof. Let H have a connected component T which is a tree and an edge ej which is 
not on T . If T consists of just one vertex, say i, then row i of N is a zero row giving 
det(N) = 0. Suppose T has at least two vertices. Now consider the square submatrix 
N ′ of N with rows corresponding to vertices of T and columns corresponding to edges 
of T together with ej . Then the column of N ′ corresponding to ej is a zero row giving 
det(N ′) = 0. Since entries in rows of N corresponding to T that are outside of N ′

are zero, the rows of N corresponding to T are linearly dependent and consequently 
det(N) = 0. �
Theorem 3.3. Let G be a simple graph on n vertices and m ≥ n edges with the incidence 
matrix N . Let S be a n-subset of {1, 2, . . . , m} and H be a spanning subgraph of G with 
edges indexed by S. Then one of the following is true for H:

1. H has a connected component which is a tree. Then det(N [S]) = 0.
2. All connected components of H are unicyclic and at least one of them is even-

unicyclic. Then det(N [S]) = 0.
3. H has k connected components which are all odd-unicyclic. Then det(N [S]) = ±2k.

Proof. 1. Suppose H has a connected component which is a tree. Since H has n edges, 
H has an edge not on the tree. Then det(N [S]) = 0 by Lemma 3.2.

2. Suppose all connected components of H are unicyclic and at least one of them is 
even-unicyclic. Since N [S] is a direct sum of incidence matrices of unicyclic graphs 
where at least one of them is even-unicyclic, then det(N [S]) = 0 by Lemma 2.2.

3. Suppose H has k connected components which are all odd-unicyclic. Since N [S]
is a direct sum of incidence matrices of k odd-unicyclic graphs, then det(N [S]) =
(±2)k = ±2k by Lemma 2.2. �

By Theorem 1.5 and 3.3, we have the following theorem.

Theorem 3.4. Let G be a simple graph on n vertices with signless Laplacian matrix Q. 
Then

det(Q) =
∑
H

4c(H),

where the summation runs over all spanning subgraphs H of G on n edges whose all 
connected components are odd-unicyclic.

Proof. By Theorem 1.5 and Observation 1.6,

det(Q) = det(NNT ) =
∑
S

det(N(;S])2,

where the summation runs over all n-subsets S of {1, 2, . . . , m}. By Theorem 3.3, we 
have
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det(Q) =
∑
S

det(N(;S])2 =
∑
H

(±2c(H))2 =
∑
H

4c(H),

where the summation runs over all spanning subgraphs H of G whose all connected 
components are odd-unicyclic. �

Let ous(G) denote the number of spanning subgraphs H of a graph G where 
each connected component of H is an odd-unicyclic graph. So ous(G) is the number 
of TU -subgraphs of G whose all connected components are odd-unicyclic. Note that 
c(H) ≥ 1 for all spanning subgraphs H of G whose all connected components are odd-
unicyclic. By Theorem 3.4, we have an upper bound for ous(G).

Corollary 3.5. Let G be a simple graph with signless Laplacian matrix Q. Then det(Q) ≥
4ous(G).

For example, if G is bipartite graph, then det(Q)
4 = 0 = ous(G). If G is an odd-unicyclic 

graph, then det(Q)
4 = 1 = ous(G).

Note that by appending edges to an odd cycle in G we get at least one TU -subgraph 
of G with a unique odd-unicyclic connected component. Let oc(G) denote the number of 
odd cycles in a graph G. Then oc(G) ≤ ous(G), where the equality holds if and only if 
G is a bipartite graph or an odd-unicyclic graph. Then we have the following corollary.

Corollary 3.6. Let G be a simple graph with signless Laplacian matrix Q. Then det(Q)
4 ≥

oc(G), the number of odd cycles in G, where the equality holds if and only if G is a 
bipartite graph or an odd-unicyclic graph.

4. Open problems

In this section we pose some problems related to results in Sections 2 and 3. First 
recall Corollary 3.6 which gives a linear algebraic sharp upper bound for the number of 
odd cycles in a graph. So an immediate question would be the following:

Question 4.1. Find a linear algebraic (sharp) upper bound of the number of even cycles 
in a simple graph.

To answer this one may like to apply Cauchy–Binet Theorem as done in Sections 2
and 3. Then a special n ×m matrix R will be required with the following properties:

1. RRT is a decomposition of a fixed matrix for a given graph G.
2. If G is an even (resp. odd) cycle, then det(R) is ±c (resp. zero) for some fixed nonzero 

number c.

For other open questions consider a simple connected graph G on n vertices and m ≥ n

edges with signless Laplacian matrix Q. The characteristic polynomial of Q is
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PQ(x) = det(xIn −Q) = xn +
n∑

i=1
aix

n−i.

It is not hard to see that a1 = −2m and a2 = 2m2−m − 1
2
∑n

i=1 d
2
i where (d1, d2, . . . , dn)

is the degree-sequence of G. Theorem 4.4 in [2] provides a broad combinatorial inter-
pretation for ai, i = 1, 2, . . . , n. A combinatorial expression for a3 is obtained in [3, 
Thm. 2.6] by using mainly Theorem 4.4 in [2]. Note that

a3 = (−1)3
∑

1≤i1<i2<i3≤n

det(Q[i1, i2, i3]).

So it may not be difficult to find corresponding combinatorial interpretation of 
det(Q[i1, i2, i3]) in terms of subgraphs on three edges. Similarly we can investigate other 
coefficients and corresponding minors which we essentially did for an and an−1 in Sec-
tions 3 and 2 respectively. So the next coefficient to study is an−2 which entails the 
following question:

Question 4.2. Find a combinatorial expression or a lower bound for det(Q(i1, i2)).

By Cauchy–Binet Theorem,

det(Q(i1, i2)) =
∑
S

det(N(i1, i2;S])2,

where the summation runs over all (n − 2)-subsets S of the edge set {1, 2, . . . , m}. So it 
comes down to finding a combinatorial interpretation of det(N(i1, i2; S]).
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