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1. Introduction

Inverse eigenvalue problems stemming from applications have been studied to a great 
extent from several points of view. For instance, the inverse Sturm–Liouville problem 
essentially seeks to determine the density of a vibrating string from its natural frequencies 
(see [3, p. 83], and [12]). Similar but more complicated problems occur in other areas of 
science and engineering (see for example [1] for problems arising from geophysics, and 
[13] for an example in applied electromagnetics). Common approaches involve solving a 
finite discretization of the problem and proving that the solution of the discrete problem 
converges to the solution of the continuous problem. For example, Hald in his 1978 
paper [8] used the Rayleigh–Ritz method for calculating the eigenvalues of a two point 
boundary value problem, and reduced the inverse problem for the differential equation 
to a discrete inverse eigenvalue problem.

It is of interest to analyze the vibrations of lumped parameter systems, that is, systems 
that are modeled as rigid masses joined by massless springs. In general, more accurate 
results are obtained by increasing the number of masses and springs, that is, by increasing 
the degrees of freedom. As the number of degrees of freedom is increased without limit, 
the concept of the system with distributed mass and elasticity is formed. Stokey [16]
gives a thorough treatment of the direct problem when the degrees of freedom is infinite.

The λ-structured-inverse-eigenvalue-problem (λ-SIEP) asks about the existence of a 
matrix whose graph and eigenvalues are given. In a lot of cases, one seeks to find a 
symmetric tridiagonal matrix (a matrix whose graph is a disjoint union of paths) with 
prescribed eigenvalues [5]. In 1989 Duarte [7] showed that the λ-SIEP problem has a 
solution whenever the given graph is a finite tree. In [15] the general problem is described 
and solved when all the eigenvalues are distinct and the graph is finite.

In this paper our goal is to establish analogous results when the graph and hence 
the solution matrix are infinite. In order to do so, in Section 2 we introduce a property 
that captures a notion of genericity for finite matrices in the settings of the Jacobian 
method [15]. Then in Section 3 we solve the finite λ-SIEP again but instead of solving 
the problem in one step, we find the solutions An using induction on n, the number of 
vertices of the graph, and the Jacobian method. This approach enables us to control the 
norm of An’s in each step. Finally, in Section 4 we will show that the limit of An’s as n
approaches infinity exists and has the given graph and spectrum.

Throughout the paper ◦ denotes the Schur (entry-wise) product of two matrices, and 
the Lie bracket [A, B] is the commutator of two matrices A and B, that is AB − BA. 
A zero matrix of appropriate size is denoted by O, all vectors are written in bold small 
letters, and 0 denotes a zero vector of appropriate size to the context.

We assume throughout this paper that all matrices have real entries. Let A be an n ×n

symmetric matrix and G a simple graph on n vertices. For a set S ⊂ [n] = {1, 2, . . . , n}
let A[S] denote the submatrix of A obtained by deleting the rows and columns indexed 
by [n] \ S. Also let G[S] denote the induced subgraph of G on the vertices labeled by S. 
We say G is the graph of A when for i �= j we have Aij �= 0 if and only if vertices i and 
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j are adjacent in G. Furthermore, for an infinite matrix A whose rows and columns are 
indexed by N, we say that an infinite graph G on countably many vertices labeled by N
is the graph of A when G[S] is the graph of A[S] for any nonempty finite S ⊂ N. Note 
that G is not necessarily locally finite.

2. The Weak Spectral Property

The problem studied in this paper is about the existence of a matrix with a given 
spectrum and the property that each off-diagonal entry of the matrix is prescribed to 
be either zero or nonzero with no restriction on the diagonal entries. The Jacobian 
method [15] starts with a simple matrix with the given spectrum, and changes the 
entries slightly to obtain the desired pattern of zero and nonzero entries while keeping 
the spectrum intact. In this application of the Jacobian method we start with a diagonal 
matrix with the given spectrum, and change the off-diagonal entries one row and one 
column at a time, and adjust the diagonal entries. The process of showing that changing 
off-diagonal entries can be compensated with a change in the diagonal entries so that the 
spectrum remains intact involves using the Implicit Function Theorem (IFT). Checking 
the necessary conditions of the IFT for this problem involves a notion of robustness and 
genericity for the solution of the inverse problem we are interested in. A stronger version 
of this robustness is introduced in [2] as the Strong Spectral Property (SSP). In this 
section we introduce a property for finite matrices, similar to the SSP, which we call the 
Weak Spectral Property (WSP), and study some of its properties that are critical to our 
approach in solving the inverse problem. The WSP implies the SSP, because the WSP 
uses weaker assumptions than the SSP.

Definition 2.1. A symmetric matrix A is said to have the Weak Spectral Property (or A
has the WSP for short) if X = O is the only symmetric matrix satisfying

(1) X ◦ I = O, and
(2) [X, A] = O.

Note that any 1 × 1 matrix has the WSP. When n ≥ 2, an n ×n scalar matrix cannot 
have the WSP, since any such matrix belongs to the center of the algebra of matrices. 
More generally, any matrix A with the WSP cannot have a constant diagonal, because 
if all the diagonal entries of A are equal to a constant c, then

(A− cI) ◦ I = O and [A− cI, A] = O.

Thus either X = A − cI is a nonzero solution of (1) and (2), or A equals the scalar 
matrix cI. For 2 × 2 matrices this necessary condition for the WSP is sufficient as well, 
and using this it is easy to give explicit examples to show that the WSP is not necessarily 
invariant under a change of basis.
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Observation 2.2. A 2 × 2 symmetric matrix has the WSP if and only if it has distinct 
diagonal entries.

However for n × n matrices with n ≥ 2 having distinct diagonal entries does not 
guarantee the WSP, as the following example illustrates.

Example 2.3. Consider the matrices

A =
[4 0 1

0 3 0
1 0 2

]
and B =

[4 1 0
1 3 1
0 1 2

]
.

Then a short calculation shows that the matrix A has the WSP but not the matrix B.

The following lemma shows that the WSP is an open property. In fact, the proof shows 
that any sufficiently small perturbation, symmetric or not, of a matrix with the WSP 
satisfies the conditions of Definition 2.1.

Lemma 2.4 (The WSP is an open property). If a matrix A has the WSP, then any 
sufficiently small symmetric perturbation of A also has the WSP.

Proof. We prove the contrapositive of the statement. Let ‖ · ‖ denote any matrix norm 
and assume that for each n ∈ N there exist nonzero symmetric matrices En and Xn such 
that

(1) Xn ◦ I = O,
(2) [Xn, A + En] = O, and
(3) ‖En‖ = 1/n.

With a scaling we can set ‖Xn‖ = 1 for all values of n, and Xn still would satisfy the 
Properties (1) and (2). Note that the set of matrices of norm one is compact in the set of 
all square matrices with the Euclidean topology. Hence we can substitute the sequence 
{Xn}, if necessary, with a convergent subsequence that we again denote by {Xn}. Thus, 
taking the limit of the commutation relation (2) as n → ∞, we obtain

[ lim
n→∞

Xn, A] = lim
n→∞

[Xn, A] = lim
n→∞

[En, Xn] = O.

This proves that A does not have the WSP, because the nonzero matrix X = lim
n→∞

Xn

satisfies the conditions of Definition 2.1. �
Observation 2.5. Note that a matrix A has the WSP if and only if A + cI has the WSP 
for any real number c. This implies that the set of symmetric matrices without the WSP 
has no isolated points.
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We conclude this section by proving that the direct sum of two matrices with the 
WSP which do not share an eigenvalue has the WSP.

Lemma 2.6. Let A and B be two matrices with the WSP which do not have a common 
eigenvalue. Then A ⊕B also has the WSP.

Proof. Let

X =
[
X1 X2

X3 X4

]
,

where X1 and X4 have the same size as A and B, respectively, and assume that X◦I = O, 
that is, X1 ◦ I = O and X4 ◦ I = O. Furthermore, assume that [X, A ⊕B] = O. We want 
to show that X = O. Note that

[X,A⊕B] =
[

[X1, A] X2B −AX2

X3A−BX3 [X4, B]

]
= O.

Hence [X1, A] = O and [X4, B] = O. Since A and B have the WSP, we conclude that 
X1 = O and X4 = O. Furthermore, X2B−AX2 = O and X3A −BX3 = O. That is, X2
and X3 are the intertwining matrices of A and B. By Lemma 1.1 of [15] X2 = O and 
X3 = O, since A and B do not have a common eigenvalue. �

We will use the following corollary of the above lemma in the next section.

Corollary 2.7. If a matrix A has the WSP, then so does A ⊕[c] where c is any real number 
that is not an eigenvalue of A.

3. Finite λ-SIEP solved with induction

In this section, to control the norm of matrices constructed, we provide an inductive 
proof for Theorem 3.2 below, which is also proved using the Jacobian method in [15].

Let G be a given graph on n vertices 1, 2, . . . , n and with m edges {i�, j�} where 
� = 1, 2, . . . , m, and i� < j�. Also, let λ1 < λ2 < . . . < λn be n distinct real numbers, and 
let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym), where xi’s and yi’s are independent real 
unknowns. Define M = M(x, y) to be the n × n symmetric matrix whose i-th diagonal 
entry is xi, its (i�, j�) and (j�, i�) entries are y�, and it is zero elsewhere. Define

f : Rn × R
m → R

n

(x,y) �→
(
λ1(M), λ2(M), . . . , λn(M)

)
,

where λi(M) is the i-th smallest eigenvalue of M . We want to show that there is a 
real symmetric matrix A whose graph is G and its eigenvalues are λ1, λ2, . . . , λn. In 
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other words, we want to find (a, b) ∈ R
n × R

m such that no entry of b is zero and 
f(a, b) = (λ1, λ2, . . . , λn). In order to do so we introduce a new function

g : Rn × R
m → R

n

(a, b) �→
(

trM ,
1
2 trM2 , . . . ,

1
n

trMn

)
.

Note that by Newton’s identities [14] there exists an invertible function h : Rn → R
n

such that h ◦ g(a, b) = f(a, b) for all (a, b) ∈ R
n × R

m. Thus it suffices to show that 
there is (a, b) ∈ R

n × R
m such that none of the entries of b is zero, and

g(a, b) =
(

n∑
i=1

λi ,
1
2

n∑
i=1

λ2
i , . . . ,

1
n

n∑
i=1

λn
i

)
. (3.1)

Let Jacx(g) denote the matrix obtained from the Jacobian matrix of g restricted to 
the columns corresponding to the derivatives with respect to xi’s. Let A = M(a, b) for 

some (a, b) ∈ R
n × R

m. The matrix Jacx(g)
A

is the evaluation of Jacx(g) at (a, b). 

Then by Lemma 3.1 of [15] it is easy to see that

Jacx(g)
A

=

⎡⎢⎢⎢⎢⎣
I11 · · · In−1,n−1 Inn
A11 · · · An−1,n−1 Ann

...
. . .

...
...

An−1
11 · · · An−1

n−1,n−1 An−1
nn

⎤⎥⎥⎥⎥⎦ ,

where Ak
ij denotes the (i, j) entry of Ak.

Lemma 3.1. Let A be an n × n symmetric matrix with n distinct eigenvalues. Then A

has the WSP if and only if Jacx(g)
A

is invertible.

Proof. First suppose that A has the WSP. We show that J = Jacx(g)
A

is invertible 

by proving that the rows of J are linearly independent. Let α = (α0, α1, . . . , αn−1). For 
p(x) = α0 + α1x + · · · + αn−1x

n−1 and X := p(A), it is clear that [X, A] = O. Assume 
that αJ = 0 and observe that this holds if and only if X ◦ I = O. Since A has the WSP, 
this implies that X = p(A) = O. Using the fact that A has n distinct eigenvalues and 
that its minimal polynomial has degree n we conclude that p(x) ≡ 0, and hence α = 0
as we wanted.

Next, assume that J = Jacx(g)
A

is invertible and that X ◦ I = O and [X, A] = O

for some symmetric matrix X. Since X commutes with the matrix A with n distinct 
eigenvalues, X must be a polynomial in A of degree at most n − 1 (see for instance 
[9, Problem 1.3.P4]). Suppose X = p(A) for p(x) = α0 + α1x + · · · + αn−1x

n−1. Let 
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α = (α0, α1, . . . , αn−1). By the observation in the previous part, X ◦ I = O implies 
αJ = 0. But since J is invertible, α = 0, and hence p(x) ≡ 0. Therefore, X = p(A) = O. 
This proves that A has the WSP. �
Theorem 3.2. Given a graph G on n vertices and a set of n distinct real numbers Λ =
{λ1, λ2, . . . , λn}, there is an n × n symmetric matrix whose graph is G and its spectrum 
is Λ.

Proof. By induction on the number of vertices we prove the stronger result that there 
exist a and b satisfying (3.1) such that the graph of A = M(a, b) is G and A has the 
WSP.

When n = 1, the matrix A = [λ1] has the WSP and establishes the base of the induc-
tion for the graph G with one vertex. Now assume that our claim holds for n −1, that is, 
given a graph Gn−1 on n −1 vertices and n −1 distinct real numbers λ1, λ2, . . . , λn−1, there 
exists a symmetric matrix An−1 whose graph is Gn−1, its spectrum is {λ1, λ2, . . . , λn−1}, 
and An−1 has the WSP. To prove the claim for n, assume that the vertices of G are la-
beled by 1, 2, . . . , n and let Gn−1 be the graph obtained from G by removing its n-th 
vertex. The induction hypothesis applied to Gn−1 and λ1, λ2, . . . , λn−1 yields a matrix 
An−1 with the desired properties. Now, let

A = An−1 ⊕ [λn] =

⎡⎢⎣An−1 0

0 λn

⎤⎥⎦ . (3.2)

We will use the Implicit Function Theorem to make the desired entries in the last row 
and last column of A nonzero, without changing the eigenvalues of the matrix.

Assume that the labeling of the vertices of G is done in such a way that the n-th vertex 
is adjacent to vertices 1, 2, . . . , d. Note that A has the WSP by Corollary 2.7, and there-
fore Lemma 3.1 implies that J = Jacx(g)

A

is nonsingular. Thus, by the Implicit Function 

Theorem, for sufficiently small ε1, ε2, . . . , εd, there exist numbers Ã11, Ã22, . . . , Ãnn close 
to A11, A22, . . . , Ann such that if

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã11 A12 · · · A1,n−1

A21 Ã22 · · · A2,n−1

...
...

. . .
...

An−1,1 An−1,2 · · · Ãn−1,n−1

ε1
...
εd

0
...
0

ε1 · · · εd 0 · · · 0 Ãnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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then

g(x,y)
Ã

=
(

n∑
i=1

λi ,
1
2

n∑
i=1

λ2
i , . . . ,

1
n

n∑
i=1

λn
i

)
.

Furthermore, if εi’s are chosen to be nonzero, then G is the graph of Ã. Thus f(x, y)
Ã

=

(λ1, λ2, . . . , λn), that is, the spectrum of Ã equals Λ. It is evident that this solution is not 
unique. Now recall that the operator norm of the matrix A, denoted ‖A‖op, is defined by

‖A‖op = sup
‖v‖2=1

‖Av‖2.

Choosing εi’s small enough, we can have

‖Ã−A‖op < ε (3.3)

for any given ε. It only remains to prove that Ã has the WSP whenever ε is sufficiently 
small. This is immediate because A defined as in (3.2) has the WSP by Corollary 2.7, and 
therefore so does Ã, provided that ε in (3.3) is sufficiently small to allow an application 
of Lemma 2.4. �
Remark 3.3. Note that the proof of Theorem 3.2 enables us to control the norm of Ã in 
each step. This will be important in examination of the infinite case of this SISP in the 
next section.

4. Infinite λ-SISP

In this section we will prove an analogue of Theorem 3.2 for countably infinite (but 
not necessarily locally finite) graphs. This is done by taking the limit, in a suitable sense, 
of the matrices Ã that were constructed in the proof of Theorem 3.2. Then we will show 
that this limit has the desired properties.

We begin with recalling a few definitions from the spectral theory. Let T be a bounded 
operator from a Hilbert space H to itself. The spectrum of T , and the point spectrum
of T (consisting of eigenvalues of T ) are defined by

σ(T ) = {λ ∈ C | T − λI is not invertible},

and

σp(T ) = {λ ∈ C | T − λI is not one-to-one},

respectively. Clearly, σp(T ) is contained in σ(T ). When H is finite-dimensional σ(T ) =
σp(T ), since a linear operator on H is one-to-one if and only if it is invertible. However, 
when H is infinite-dimensional T may have additional elements in its spectrum, and may 
have no eigenvalues.
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In general, σp(T ) is contained in a subset of the spectrum, called the approximate 
point spectrum and denoted σapp(T ), that plays an important role in the spectral theory 
in infinite-dimensional spaces. The notion of approximate point spectrum is obtained by 
strengthening the notion of a one-to-one operator to an operator that is bounded below. 
By definition, λ ∈ σapp(T ) if T − λI is not bounded below, meaning that there are unit 
vectors un with ‖(T − λI)un‖ → 0 as n tends to infinity. A point λ with this property 
is called an approximate eigenvalue of T .

Let T be a bounded operator on a Hilbert space. We say that T is a Fredholm operator
if

(a) the kernel of T has finite dimension, and
(b) the range of T has finite codimension.

By a theorem of Atkinson [6, Theorem 5.17], T is Fredholm if and only if T is invertible 
modulo compact operators in the sense that there exists a bounded operator S such that 
I − ST and I − TS are compact operators.

We shall need a corollary of the following result about a “continuity property” of the 
spectrum in the proof of our main theorem (see Chapter V, Theorem 4.10 of [10]).

Theorem 4.1. [10, p. 291] Let S and T be bounded self-adjoint operators on a Hilbert space 
with the spectra σ(S) and σ(T ), respectively. Then the Hausdorff distance dH(σ(S), σ(T ))
satisfies

dH(σ(S), σ(T )) ≤ ‖S − T‖op.

This theorem immediately implies the following corollary.

Corollary 4.2. Let {Tn}∞n=1 be a sequence of bounded self-adjoint operators on a Hilbert 
space H, and assume that Tn → T in the operator norm. Then for any λ ∈ σ(T ) and any 
neighborhood U of λ, there exists an N ∈ N such that U intersects σ(Tn) nontrivially for 
all n > N .

Now we are ready to state and prove our main theorem.

Theorem 4.3 (SISP with data (G, Λ)). Given an infinite graph G on countably many 
vertices and a compact, infinite set of real numbers Λ, there exists a self-adjoint operator 
T on the Hilbert space �2(N) such that

(i) the (approximate point) spectrum of T equals Λ, and
(ii) the (real symmetric) standard matrix of T has graph G.

Proof. Let {λ1, λ2, . . . } denote a countable dense subset of Λ. Suppose the vertices of G
are labeled by N and let G[{1, 2, . . . , n}] denote the induced subgraph of G on the first 
n vertices. Then, by (3.3) in the proof of Theorem 3.2, for any ε > 0 and each n ∈ N we 
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can find a matrix Ãn with the finite graph G[{1, 2, . . . , n}], and the spectrum the finite 
set of distinct real numbers {λ1, λ2, . . . , λn} such that

‖Ãn ⊕ [λn+1] − Ãn+1‖op <
ε

2n . (4.1)

For each n define the bounded linear operator Tn on the Hilbert space of square-
summable sequences �2(N) (denoted �2 hereafter for short) such that

Mn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ãn O

O

λn+1
λn+2

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
is the matrix representation of Tn with respect to the standard Hilbert basis B =
{e1, e2, . . . } of �2, where the entries of Mn that are not shown are zero. It is clear from 
the definition that the matrices Mn are isospectral. Additionally, by (4.1), for any i ∈ N

‖Mnei −Mn+1ei‖2 <
ε

2n .

Thus, the sequence of partial sums {
∑n−1

k=1(Mk+1ei−Mkei)}∞n=1 is absolutely convergent, 
and therefore the sequence {Mnei}∞n=1 satisfying

Mnei = M1ei +
n−1∑
k=1

(Mk+1ei −Mkei)

is convergent in �2. Let M denote the matrix whose columns are obtained by this limiting 
process, that is, M is the matrix that Mei = limn→∞ Mnei for each i ∈ N. Note that for 
each n = 1, 2, . . . the graph of Ãn is the induced subgraph of G on the first n vertices. 
Thus, by construction, G is the graph of M . Our next objective is showing that M is 
indeed the standard matrix of a bounded linear operator T : �2 → �2. Observe that

‖Tn − Tn+1‖op = sup
‖v‖2=1

‖Tnv − Tn+1v‖2

= sup
‖v‖2=1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣ Ãn

⎡⎢⎣ v1
...
vn

⎤⎥⎦
λn+1vn+1

⎤⎥⎥⎥⎥⎦− Ãn+1

⎡⎢⎣ v1
...

vn+1

⎤⎥⎦
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2
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= sup
‖v‖2=1

∥∥∥∥∥∥∥
([

Ãn

λn+1

]
− Ãn+1

)⎡⎢⎣ v1
...

vn+1

⎤⎥⎦
∥∥∥∥∥∥∥

2

<
ε

2n ,

where in the last line we have used the submultiplicative property of the operator 
norm and (4.1). This inequality immediately implies that the sequence of partial sums 
{
∑n−1

k=1(Tk+1 − Tk)}∞n=1 is absolutely convergent in the Banach space of bounded oper-
ators B(�2), and hence the sequence {Tn}∞n=1 satisfying

Tn = T1 +
n−1∑
k=1

(Tk+1 − Tk)

is convergent to a limit T with respect to the operator norm. Since for each i ∈ N we 
have Tei = limn→∞ Tnei and Tnei = Mnei, we conclude that Tei = Mei and thus M
is the standard matrix of T .

It remains to prove that σ(T ) = Λ. First, we claim that each λi ∈ {λ1, λ2, . . . , } ⊂ Λ
is in the spectrum of T , that is, T −λiI is not invertible. To see this note that as n → ∞

‖(T − λiI) − (Tn − λiI)‖op = ‖T − Tn‖op → 0

which shows the existence of noninvertible operators in any neighborhood of T − λiI. 
Since invertibility is an open property in any unital Banach algebra and in particular 
in B(�2), we have {λ1, λ2, . . . } ⊂ σ(T ), and the claim is proved. By taking closures, this 
inclusion implies Λ ⊂ σ(T ), because {λ1, λ2, . . . } is dense in Λ and σ(T ) is closed in R.

Next, since Tn → T in the operator norm and σ(Tn) = Λ for all n, by Corollary 4.2
we conclude that for any λ ∈ σ(T ), every neighborhood of λ intersects Λ. Hence the 
reverse inclusion σ(T ) ⊂ Λ is also established.

Finally, to complete the proof of item (i) in the statement of the theorem note that 
the spectrum of any self-adjoint operator equals its approximate point spectrum, and T
is clearly self-adjoint. �

The isolated points of the spectrum of any self-adjoint operator are its eigenvalues, 
for instance, by an application of Gelfand’s continuous functional calculus [6]. Thus the 
isolated points of Λ are contained in the point spectrum of any solution T—obtained as 
in the proof of Theorem 4.3 or otherwise—for the SISP with data (G, Λ). On the other 
hand, by focusing only on the solutions T obtained as in the proof of Theorem 4.3 we 
will prove that the set of limit points of the spectrum of T equals the essential spectrum
of T . This will allow us to show that our solutions of every SISP with the same Λ are 
approximately unitarily equivalent. We will then use this equivalence relation to show 
that the multiplicity of isolated eigenvalues of the constructed solutions is exactly one.
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Definition 4.4. Let T be a bounded self-adjoint operator on a Hilbert space. Then the 
essential spectrum of T , σess(T ), is defined by

σess(T ) = {λ ∈ C | T − λI is not a Fredholm operator}. (4.2)

The essential spectrum of a self-adjoint operator T can be equivalently defined as the 
complement of its discrete spectrum. That is,

σess(T ) = σ(T ) \ σdiscr(T ), (4.3)

where the discrete spectrum, denoted σdiscr(T ), is the set of isolated eigenvalues of T
with finite multiplicity.

There is a famous classification result due to Weyl, von Neumann, and Berg (Theo-
rem 4.6 below) involving the essential spectrum of self-adjoint operators and the multi-
plicity of their isolated eigenvalues. To state it we need the following definition.

Definition 4.5. Two bounded operators T1 and T2 on Hilbert spaces H1 and H2 are said 
to be approximately unitarily equivalent (written T1 ∼a T2) if there is a sequence of 
unitary isomorphisms of Hilbert spaces Un : H1 → H2 such that T1 = limn→∞ U∗

nT2Un.

It is well-known (see for instance [4]) that if T1 ∼a T2, then a sequence of unitary 
operators {Un}∞n=1 can be chosen such that in addition to T1 = limn→∞ U∗

nT2Un, one 
also has that T1 − U∗

nT2Un belongs to the ideal K(H1) of compact operators.

Theorem 4.6 (Weyl–von Neumann–Berg, see [4, Theorem II.4.4]). Two self-adjoint op-
erators M and N on separable Hilbert spaces are approximately unitarily equivalent if 
and only if

(i) σess(M) = σess(N), and
(ii) dim ker(M − λI) = dim ker(N − λI) for all λ ∈ C \ σess(M).

Now we are ready to prove the following corollaries of Theorem 4.3 concerning the limit 
points of the spectrum and the approximate unitary equivalence of any two constructed 
solutions of a given SISP.

Corollary 4.7. Let T be a bounded self-adjoint operator obtained according to the proof 
of Theorem 4.3 as a solution to the SISP with data (G, Λ). Then σess(T ) = Λ′, where Λ′

is the set of limit points of Λ.

Proof. Let T = limn→∞ Tn where {Tn}∞n=1 is the sequence of operators defined as in 
the proof of Theorem 4.3 relative to some countable dense subset {λ1, λ2, . . . } of Λ. The 
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containment Λ′ ⊂ σess(T ) is clear from (4.3) and the fact that Λ = σ(T ), as shown in The-
orem 4.3. To prove the reverse inclusion, let λ ∈ σess(T ) be arbitrary. By definition (4.2)
and Atkinson’s Theorem [6, Theorem 5.17] T − λI is not invertible “modulo compact 
operators.” More precisely, if we denote the ideal of compact operators in B(�2) by K(�2), 
then (T − λI) + K(�2) is not an invertible element of the Calkin algebra B(�2)/K(�2). 
Moreover, the equality

T − λI = [T − diag(λ1, λ2, . . . )] + [diag(λ1, λ2, . . . ) − λI]

implies that

(T − λI) + K(�2) = diag(λ1 − λ, λ2 − λ, . . . ) + K(�2),

because T−diag(λ1, λ2, . . . ) is the limit of the finite-rank operators Tn−diag(λ1, λ2, . . . ), 
and hence it is compact. To finish the proof we only need to observe that diag(λ1−λ, λ2−
λ, . . . ) +K(�2) is noninvertible in the Calkin algebra (if and) only if 0 is a limit point of 
{λ1 − λ, λ2 − λ, . . . }. This is equivalent to saying that λ is a limit point of {λ1, λ2, . . . }
in which case λ ∈ Λ′. �

We mention in passing that if Λ′ is a singleton, Λ′ = {λ}, then T − λI is compact. 
To see this, let Tn and T be as in the proof of Theorem 4.3. If λ is the only limit point 
of Λ, then all Tn−λI and consequently their limit in operator norm T −λI are compact 
operators.

Corollary 4.8. Let S and T be any two bounded self-adjoint operators obtained according 
to the proof of Theorem 4.3 as solutions to the SISP with data (G1, Λ) and (G2, Λ), 
respectively. Then S and T are approximately unitarily equivalent. In particular, T ∼a

diag(λ1, λ2, . . . ) for any countable dense subset {λ1, λ2, . . . } of Λ.

Proof. Let Sn and Tn be defined as in the proof of Theorem 4.3 such that S = limn→∞ Sn

and T = limn→∞ Tn. Then for all n,

• σess(Sn) = σess(Tn) = Λ′, and
• dim ker(Sn − λI) = dim ker(Tn − λI) = 1 for all λ ∈ Λ \ Λ′,

because, by construction, each of Sn and Tn can be realized as the direct sum of an 
n × n matrix and an infinite diagonal matrix for which verifying these two conditions is 
straightforward. Thus Theorem 4.6 implies Sn ∼a Tn. For each n, let {Un,k}∞k=1 denote 
the sequence of unitary operators that satisfy Sn = limk→∞ U∗

n,kTnUn,k and in addition, 
by passing to a subsequence of {Un,k}∞k=1 if necessary, we can arrange that when k = 1
we have

‖Sn − U∗
n,1TnUn,1‖op < max

{
‖Tn − T‖op, ‖Sn − S‖op,

1
}
.

n
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Define the sequence of unitary operators {Vn}∞n=1 by setting Vn = Un,1. We wish to 
prove that S = limn→∞ VnTV

∗
n . This is accomplished by a 3ε–argument as follows. 

Given ε > 0, choose N > 0 large enough such that

max
{
‖Tn − T‖op, ‖Sn − S‖op,

1
n

}
< ε

whenever n > N . Then for any such n,

‖S − V ∗
n TVn‖op ≤ ‖S − Sn‖op + ‖Sn − V ∗

n TnVn‖op + ‖V ∗
n TnVn − V ∗

n TVn‖op

= ‖S − Sn‖op + ‖Sn − U∗
n,1TnUn,1‖op + ‖Tn − T‖op

< 3 max
{
‖Tn − T‖op, ‖Sn − S‖op,

1
n

}
< 3ε.

Since ε > 0 is arbitrary, our claim is proved. �
“Approximate unitary equivalence” cannot be replaced by the stronger notion of “uni-

tary equivalence” in Corollary 4.8 as the following simple example shows. Let G be the 
empty graph on countably many vertices and let Λ be the compact set { 1

n | n ∈ N} ∪{0}. 
Then our construction in the proof of Theorem 4.3 produces the following solutions for 
the SISP with data (G, Λ):

diag
(

1, 1
2 ,

1
3 . . .

)
and diag

(
0, 1, 1

2 , . . .
)

(4.4)

corresponding to two different choices of countable dense subsets of Λ, namely Λ \ {0}
and Λ. The two operators in (4.4) are approximately unitarily equivalent but clearly not 
unitarily equivalent.

Remark 4.9. Corollary 4.8 immediately implies that if T is a solution of the SISP with 
data (G1, Λ1) constructed as above, then any isolated eigenvalue of T has multiplicity 
one. To see this it suffices to let G2 be the empty graph on countably many vertices and 
let Λ2 = Λ1 so that a solution to the SISP with data (G2, Λ2) is the diagonal operator 
S = diag(λ1, λ2, . . . ) for a countable dense subset {λ1, λ2, . . . } of Λ. Since S ∼a T by 
Corollary 4.8, an application of Theorem 4.6 to the pair of self-adjoint operators S and 
T gives

dim ker(T − λI) = 1 for all λ ∈ σ(T ) \ σess(T ) = Λ \ Λ′.

5. Conclusion

Motivated by some problems in science and engineering such as the inverse Sturm–
Liouville problem, in this manuscript we have introduced a structured inverse spectrum 
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problem (SISP) for infinite graphs and have shown the existence of a (non-unique) so-
lution for this problem. We have used the Jacobian method to establish a procedure for 
controlling the norm of the solutions of the finite problem in a way that the constructed 
sequence of solutions for finite cases converges to a solution of the infinite problem. We 
have also shown that any two solutions of the SISP constructed by our method are 
approximately unitarily equivalent.

In an extension of this work [11] we relax the compactness condition on Λ in the 
main result of this paper by working with unbounded operators. More precisely, given 
an infinite graph G on countably many vertices, and a closed, infinite set Λ of real 
numbers, we prove the existence of an unbounded self-adjoint operator whose graph is 
G and whose spectrum is Λ.
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