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1. Introduction

The graph of an n × n real symmetric matrix A = [aij ] is the (simple) graph G on 
n vertices 1, 2, . . . , n with edges {i, j} if and only if aij �= 0 and i �= j. In the recent 
years considerable research has concerned the relationship between the spectrum of a 
symmetric matrix and its graph (for example see [3] and the references therein). The 

* Corresponding author.
E-mail addresses: k1monfared@gmail.com (K. Hassani Monfared), bshader@uwyo.edu (B.L. Shader).
http://dx.doi.org/10.1016/j.laa.2016.04.028
0024-3795/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.laa.2016.04.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:k1monfared@gmail.com
mailto:bshader@uwyo.edu
http://dx.doi.org/10.1016/j.laa.2016.04.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2016.04.028&domain=pdf


K. Hassani Monfared, B.L. Shader / Linear Algebra Appl. 505 (2016) 296–312 297
first result we recall asserts that every graph realizes each spectrum consisting of distinct 
eigenvalues. We denote the multi-set of eigenvalues of A by spec(A).

Theorem 1.1. [3, Theorem 2.2.1] Let Λ = {λ1, λ2, . . . , λn} be a set of n distinct real 
numbers and G be a graph on n vertices. Then there is a real symmetric matrix A whose 
graph is G and spec(A) = Λ.

The nowhere-zero eigenbasis problem for G, raised by Shaun Fallat [2], is an extension 
of the Theorem 1.1 that puts extra requirements on the matrix A, namely that none of 
its eigenvectors has a zero entry. Note that if G is not connected, then A will be a direct 
sum of matrices and hence its eigenvectors will have zero entries. Thus, it is necessary 
to assume G is connected. More formally, the problem we study in this paper is the 
following.

The nowhere-zero eigenbasis problem for G. For a given connected graph G on n
vertices and given list λ1, λ2, . . . , λn, of n distinct real numbers, does there exist a 
real symmetric matrix A whose graph is G, its eigenvalues are λ1, λ2, . . . , λn, and 
none of the eigenvectors of A has a zero entry?

For a square matrix A and subsets α and β of indices, A[α, β] is the submatrix of 
A with rows indexed by α and columns indexed by β. The matrix obtained from A by 
deleting its j-th row and j-th column is denoted by A(j). Note that if the j-th entry of 
an eigenvector of A is zero, then A and A(j) share the eigenvalue corresponding to that 
eigenvector. The converse is also true; namely, if A and A(j) share an eigenvalue λ, then 
there is an eigenvector of A corresponding to λ whose j-th entry is zero. To see this, 
assume j = 1 and note that if x and y are eigenvectors of A(1) and A, respectively, corre-
sponding to the eigenvalue λ, then either the first entry of x is zero, or A[{2, . . . , n}, {1}]
is in the column space of A(1) − λI, which along with the symmetry of A imply that[

0
y

]

is an eigenvector of A corresponding to λ. From this perspective, the nowhere-zero eigen-
basis problem concerns the existence of a real symmetric matrix A with prescribed 
spectrum and graph such that σ(A) ∩ σ(A(j)) = ∅ for each j.

The Cauchy interlacing inequalities guarantee that σ(A(j)) interlaces σ(A), that is, 
if λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of A and μ1 ≤ μ2 ≤ · · · ≤ μn−1 are eigenvalues of 
A(j), then

λi ≤ μi ≤ λi+1, for i = 1, 2, . . . , n− 1. (1)

Thus the condition σ(A) ∩σ(A(j)) = ∅ is equivalent to the condition that σ(A(j)) strictly 
interlaces σ(A), that is, all the inequalities in (1) are strict. Hence, from this perspective, 
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Fig. 1. Matrix A whose graph is a star on 4 vertices.

the nowhere-zero eigenbasis problem concerns finding a matrix of order n with prescribed 
spectrum and graph such that there are strict inequalities in the interlacing inequalities 
for each principle submatrix of order n − 1.

We now recall a useful concept from [3]. Let A be a real symmetric matrix whose 
graph is a tree T . For a vertex v of T , we let T (v) denote the graph obtained from T
by deleting vertex v. As T is a tree, the connected components of T (v) will be trees, 
and these are called the branches of T at v. If w ∼T v, then the branch of T at v that 
contains w is denoted by Tw(v), and the principal submatrix of A determined by the 
vertices of Tw(v) is denoted A[Tw(v)].

Definition 1.2. Let A be a real symmetric matrix or order n whose graph is a tree T . 
A vertex v of T is a Duarte vertex of A if

(i) n = 1 and v is the only vertex of T , or
(ii) n > 1, the eigenvalues of A(v) strictly interlace those of A, and w is a Duarte vertex 

for A[Tw(v)], for each vertex w in T (v) that is adjacent to v in T .

When v is a Duarte vertex of A, we say that A has the Duarte property with respect 
to v. We note that if A has the Duarte property with respect to a vertex v, then none 
of its eigenvectors has a zero entry in row v. It is shown that [3, Remark 3.1.3] for a real 
symmetric matrix A whose graph is a tree, a vertex v is a Duarte vertex for A if and 
only if σ(A(v)) ∩ σ(A) = ∅. Thus, if the graph of A is a tree, then no eigenvector of A
has a 0 if and only if A has the Duarte property with respect to each vertex.

Example 1.3 below suggests that the resolution of the nowhere-zero eigenbasis problem 
is perhaps not easy, as not every matrix with the Duarte property with respect to a vertex 
has a the Duarte property with respect to all the vertices.

Example 1.3. Consider the following matrix A whose graph is a star on 4 vertices shown 
in Fig. 1. The eigenvalues of A are approximately 2, −0.164, 2.773, and 4.391. The 
eigenvalues of A(1) are approximately 0.186, 2.471, and 4.343 which strictly interlace 
the spectrum of A, and hence A has the Duarte property with respect to vertex 1. But 
the eigenvalues of A(2) are 2, 2 and 4. That means A does not have the Duarte property 
with respect to vertex 2.

In Section 2 we provide several preliminary results regarding the Duarte property. 
In Section 3 we provide a solution for the nowhere-zero eigenbasis problem, using the 
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implicit function theorem, in the case that the graph is a tree. In Section 4 we provide a 
solution for the nowhere-zero eigenbasis problem for connected graphs, again using the 
implicit function theorem. Finally, in the last section we use the results of Section 4 to 
show that for every pair of connected graphs G and H with the same number of vertices 
there is a symmetric matrix with two distinct eigenvalues whose graph is the join of G
and H.

2. Preliminary results

Let K be a subset of vertices of T . The induced subgraph of T on vertices in K is 
denoted by T [K], and the matrix obtained from A by keeping the vertices indexed by 
K is denoted by A[K]. In this section we study several properties implied by the Duarte 
property.

Lemma 2.1. Let A be a real symmetric matrix whose graph is a tree T . Then vertex v
of T is not a Duarte vertex for A if and only if there is a vertex u and a branch K of T
at u that does not contain v such that A[K] and A[K ∪ {u}] have a common eigenvalue.

Proof. First assume v = v0 is not a Duarte vertex for A. We prove the existence of such 
u and K by induction on the number of vertices. Since v is not Duarte, T has at least 
two vertices. If A(v) and A have a common eigenvalue, then we can take u = v and K
to be a branch of T at v having that common eigenvalue. Otherwise, there is a branch 
L of v such that A[L] doesn’t have the Duarte Property with respect to the neighbor w
of v that is in L. By the induction hypothesis, there exists vertex u and a branch of K
at u in L that does not contain w with (A[L])[K] and (A[L])[K ∪{u}] having a common 
eigenvalue. Then u and K satisfy the desired properties for T .

Conversely, assume that there is a vertex u and a connected component K of T \ {u}
not containing v, such that A[K] and A[K ∪ {u}] have a common eigenvalue. Then 
the path v = v0 ∼T v1 ∼T · · · ∼T vk = u from v to u is disjoint from K. Let T ′ =
Tvk({v0, v1, . . . , vk−1}). Then A′(vk) has a common eigenvalue with A′, and v is not a 
Duarte vertex for A. �

The next result was proven in [5, Corollary 1.3.2] for the eigenvalue 0. The result 
for an arbitrary eigenvalue follows by replacing A by A − λI. Let mA(λ) denote the 
multiplicity of an eigenvalue λ of A.

Lemma 2.2. Let A be a real symmetric matrix whose graph is a tree T . If A and A(v)
have a common eigenvalue λ, then there is a vertex u of T and two connected components 
K and L of T \ {u} not containing v, where A[K] and A[L] each have an eigenvalue λ
and mA(u)(λ) = mA(λ) + 1.
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Lemmas 2.1 and 2.2 together imply the following.

Corollary 2.3. Let A be a real symmetric matrix whose graph is a tree T . If a vertex v of 
T is not a Duarte vertex for A, then there is a vertex u and two connected components K
and L of T \ {u} not containing v such that A[K] and A[L] have a common eigenvalue.

Proof. If v is not a Duarte vertex for A, then by Lemma 2.1 there is a vertex w and 
a connected component M of T (w) not containing v such that A[M ] and A[M ∪ {w}]
have a common eigenvalue μ. By Lemma 2.2 there is a vertex u of T [M ∪ {w}] and two 
connected components K and L of T [M ∪{w}](u) not containing w such that A[K] and 
A[L] have a common eigenvalue μ. �

Now we show that if a vertex is a Duarte vertex for a matrix, then it is a Duarte vertex 
for the principal submatrix obtained by deleting some of the connected components 
adjacent to that vertex.

Lemma 2.4. Let A be a real symmetric matrix whose graph is a tree T . Let v be a vertex 
of T and K1, K2, . . . , K� be the connected components of T \ {v}, and set

T ′ = T \
⋃
i∈I

Ki,

for some I ⊆ {1, 2, . . . , �}. If v is a Duarte vertex for A, then v is also a Duarte vertex 
for A[T ′].

Proof. We first show that for K, a connected component of T \{v}, if v is a Duarte vertex 
for A, then v is also a Duarte vertex for A(K). Let L = T \K, and B = A(K) = A[L]. We 
want to show that v is a Duarte vertex for B. If v is not a Duarte vertex for B, then by 
Corollary 2.3 there is a vertex u of L and two connected components M and N of L \{u}
such that B[M ] and B[N ] have a common eigenvalue. This leads to the contradiction 
that A[M ] and A[N ] have a common eigenvalue. Hence v is a Duarte vertex for B.

Repeating this process shows that if v is a Duarte vertex for A then it is a Duarte 
vertex for

A(
⋃
i∈I

Ki). �

Furthermore, Lemma 2.4 implies the following technical corollary.
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Corollary 2.5. Let A be a real symmetric matrix whose graph is a tree T . Let v0 be a 
vertex of T , with neighbors v1, v2, . . . , vk. Let T1, T2, . . . , Tk be the connected components 
of T \ {v0}, where each Ti contains vi for i = 1, 2, . . . , k. If v1 is a Duarte vertex for A, 
then each vi is a Duarte vertex for A[Ti], for i = 1, 2, . . . , k.

Proof. The fact that v2, v3, . . . , vk are Duarte vertices for A[T2], A[T3], . . . , A[Tk], respec-
tively, follows from the definition of the Duarte property of v1 for A. Also Lemma 2.4
implies v1 is a Duarte vertex for A[T1] by choosing v = v1 and K = Tv0(v1). �

Any matrix with the Duarte property with respect to a vertex v has distinct eigen-
values. Hence Corollary 2.5 implies the following.

Corollary 2.6. Let A be a real symmetric matrix whose graph is a tree T . Let v0 be a 
vertex of T , with neighbors v1, v2, . . . , vk. Let T1, T2, . . . , Tk be the connected components 
of T \ {v0}, where each Ti contains vi for i = 1, 2, . . . , k. If v1 is a Duarte vertex for A, 
then each A[Ti] has distinct eigenvalues, for i = 1, 2, . . . , k.

3. The Jacobian method and trees

In this section we will construct a matrix whose graph is a given tree T on n
vertices 1, 2, . . . , n, its spectrum is a prescribed set of n distinct real numbers Λ =
{λ1, λ2, . . . , λn}, and none of its eigenvectors have a zero entry. Informally, the idea is 
the following. Let M = {μ1, μ2, . . . , μn−1} so that M strictly interlaces Λ, that is,

λi < μi < λi+1

for i = 1, 2, . . . , n −1. By [4, Theorem 4.2] there is a matrix A with graph T and spectrum 
Λ such that the spectrum of A(1) is M. Since M strictly interlaces Λ, the matrix A has 
the Duarte property with respect to vertex 1. If A has the Duarte property with respect 
to each vertex we are done. Otherwise we use the implicit function theorem to show 
that the matrix can be perturbed so that its graph and spectrum remain the same while 
the number of vertices that are not Duarte vertices decreases. This process is repeated 
until we reach a matrix with the same graph and spectrum as A, and having the Duarte 
property with respect to each vertex. Consequently, none of the eigenvectors of this 
matrix has a zero entry.

Let T be a tree on n vertices, and v be a fixed vertex of T with neighbors v1, v2, . . . , vk, 
and let Ti = Tvi(v). Let Λ = {λ1, λ2, . . . , λn} be a set of n distinct real numbers. By [4, 
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Theorem 4.2] there is a matrix A whose graph is T , its spectrum is Λ, and v1 is a Duarte 
vertex for A. Without loss of generality assume A has the following form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

avv aT
1 aT

2 · · · aT
k

a1 A1 O · · · O

a2 O A2 · · · O

...
...

...
. . .

...

ak O O · · · Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where the first row and column correspond to vertex v, only the first entry of each aT
�

is nonzero, and each Ai = A[Ti]. Furthermore assume that A1 is m ×m.
Let B be the matrix obtained by replacing each entry of A outside of A1 by 0, that 

is,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 A1 O · · · O

0 O O · · · O

...
...

...
. . .

...

0 O O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

First, we prove the following technical lemma. Here [·, ·] denotes the commutator 
operator.

Lemma 3.1. Let A be an n ×n matrix with distinct eigenvalues, such that A and B have 
the form (2) and (3), respectively. If A has the Duarte property with respect to vertex v, 
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and if q(x) is a polynomial of degree less than m such that [A, q(B)] = O, then q(x) is 
the zero polynomial.

Proof. Assume that A has the Duarte property with respect to v and q(x) is a polynomial 
of degree less than m such that [A, q(B)] = O. By Corollary 2.6, the eigenvalues of A1

are distinct. Let

A1 =
m∑
�=1

μ�w�w
T
�

be the spectral decomposition of A1. Then

q(A1) =
m∑
�=1

q(μ�)w�w
T
� .

First note that since [A, q(B)] = O, the form of B implies that

eT q(A1) = 0T , (4)

where e is the standard unit vector of appropriate size with 1 in the first position and 
zeros elsewhere. Also, since A has the Duarte property with respect to vertex v1, by 
Corollary 2.5 A1 has the Duarte property with respect to vertex v1. This implies that 
eTw� �= 0 for � = 1, 2, . . . , m. From (4) we have:

eT q(A1) =
m∑
�=1

q(μ�)eTw�w
T
� = 0T .

Since {w1, . . . , wm} is linearly independent, each q(μ�)eTw� = 0. And since eTw� �= 0
we have q(μ�) = 0, for � = 1, 2, . . . , m. Finally, since μ1, μ2, . . . , μm are distinct and 
deg(q) < m, we conclude that q(x) is the zero polynomial. �

We now follow the method introduced in [3], known as the Jacobian method. Let 
M be the symmetric matrix obtained from A by replacing its diagonal entries by 
2x1, 2x2, . . . , 2xn and its nonzero off-diagonal entries by xn+1, xn+2, . . . , x2n−1. Set
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N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 M1 O · · · O

0 O O · · · O

...
...

...
. . .

...

0 O O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let x = (x1, x2, . . . , x2n−1). Define f : R2n−1 → R
n+m by

f(x) =
(

trM
2 ,

trM2

4 , . . . ,
trMn

2n ,
trN

2 ,
trN2

4 , . . . ,
trNm

2m

)
. (5)

Note that

Jac(f) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ trM i

∂xj

∂ trN i−n

∂xj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is an (n +m) × (2n − 1) matrix. Let J = Jac(f)
A
; that is, J is the matrix obtained from 

Jac(f) by setting xi to be the corresponding entry of A. We now show that Lemma 3.1
implies that the rows of J are linearly independent.

Lemma 3.2. Let f be defined by (5), and let A be as in (2) such that A has the Duarte 

property with respect to vertex v1. Then rows of J = Jac(f)
A

are linearly independent.

Proof. By [4, Lemma 3.1] we have
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J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11 · · · Inn
A11 · · · Ann

...
. . .

...
An−1

11 · · · An−1
nn

Ii1j1 · · · Iin−1jn−1

Ai1j1 · · · Ain−1jn−1
...

. . .
...

An−1
i1j1

· · · An−1
in−1jn−1

I ′11 · · · I ′nn
B11 · · · Bnn

...
. . .

...
Bm−1

11 · · · Bm−1
nn

I ′i1j1 · · · I ′in−1jn−1

Bi1j1 · · · Bin−1jn−1
...

. . .
...

Bm−1
i1j1

· · · Bm−1
in−1jn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where I ′ denotes the matrix obtained form the identity matrix by replacing all entries 
outside the same block as A1 with 0, and each i�j� denotes a nonzero position of A. Let

(α,β) = (α0, α1, . . . , αn−1, β0, β1, . . . , βm−1).

Assume (α, β)J = 0. It suffices to show that α = 0 and β = 0. Let

p(x) = α0x
0 + α1x + · · · + αn−1x

n−1,

q(x) = β0x
0 + β1x + · · · + βm−1x

m−1

and X = p(A) + q(B). Note that rows of J are linearly independent if and only if both 
p(x) and q(x) are the zero polynomial.

Let ◦ denote the Schur (entry-wise) product of two matrices. From (α, β)J = 0 we 
have X ◦ I = O and X ◦A = O. Partition X to conform with that of A, namely,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 yT
1 yT

2 · · · yT
k

y1 X1 X12 · · · X1k

y2 X21 X2 · · · X2k

...
...

...
. . .

...

yk Xk1 Xk2 · · · Xk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where each XT
ij = Xji. Note that [A, p(A)] = O, and thus [A, X] = [A, q(B)], which is of 

the form
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[A,X] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 aT
1 q(A1) 0 · · · 0

q(A1)a1 O O · · · O

0 O O · · · O

...
...

...
. . .

...

0 O O · · · O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Note that in the (2, 2) block of [A, X] = [A, q(B)] we have [A1, q(A1)] = O. Further note 
that for � = 1, 2, . . . , k the (� + 1, � + 1)-block of [A, X] is [A�, X�] − y�a

T
� + a�y

T
� =

O. Thus, [A�, X�] = y�a
T
� − a�y

T
� . But only the first entry of a� is nonzero. Thus 

(y�a
T
� − a�y

T
� )(1) = O.

Hence for each � = 1, 2, . . . , k we have

(a) [A�, X�](�) = O;
(b) X� ◦ I = O;
(c) X� ◦A� = O and
(d) A� has the Duarte property with respect to the vertex v� (by Corollary 2.5 and the 

fact that A has the Duarte property with respect to vertex v1).

By [4, Lemma 2.2] we have X� = O for each � = 1, 2, . . . , k. But that means each 
a�y

T
� = 0. Recall that each a� has only one nonzero entry, which is its first entry. 

Consequently, y� = 0, for � = 1, 2, . . . , k.
Now consider the (i + 1, j + 1)-block of [A, X], where 1 ≤ i < j ≤ k. This block is 

AiXij − XijAj = O. Since vertex v1 is a Duarte vertex for A, σ(Ai) ∩ σ(Aj) = ∅ for 
2 ≤ i < j ≤ k, and hence by [4, Lemma 1.1] Xij = O, for all 2 ≤ i < j ≤ k. Since 
Xji = XT

ij , we get Xij = O for i, j > 1.
Furthermore, A1X1j = X1jAj for j = 1, 2, . . . , k. By [4, Lemma 1.1] there are eigen-

vectors u1, u2, . . . , us of A1 and w1, w2, . . . , ws of Aj corresponding to the common 
eigenvalues of A1 and Aj , and scalars c1, c2, . . . , cs such that

X1j =
s∑

�=1

c�u�w
T
� .

Since Aj (j ≥ 2) has the Duarte property with respect to a vertex, Corollary 2.6 implies 
that Aj (j ≥ 2) has distinct eigenvalues. Hence, w1, w2, . . . , ws are linearly independent. 
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Moreover, each A� has the Duarte property with respect to vertex v� which corresponds 
to its first entry. Thus eTu� �= 0, for � = 1, 2, . . . , k, where e is the standard unit vector 
of the appropriate size with a 1 on the first entry. The (1, j + 1)-block of [A, X] is 
aT
j X1j = O. Since aj has only one nonzero entry on the first position, eTX1j = O for 

j = 1, 2, . . . , k. Thus

eTX1j =
s∑

�=1

c�e
Tu�w

T
� = O.

Since {w1, w2, . . . , wk} is linearly independent and each eTu� is nonzero, c� = 0 for 
� = 1, 2, . . . , k. Thus, X1j = O for � = 1, 2, . . . , k. This shows that X = O.

Recall that X = p(A) + q(B). Since X = O, p(A) = −q(B), which has first row 
and column all zeros. By Lemma 3.1 q(x) is the zero polynomial. In particular, p(A) =
−q(B) = O. Since deg(p) < n and A has n distinct eigenvalues and p(A) = O, we get 
p(x) is the zero polynomial. That is α = 0 and β = 0. �
Theorem 3.3. Let T be a tree on n vertices, and v be a fixed vertex of T with neighbors 
v1, v2, . . . , vk, and let Ti = Tvi(v). Let Λ = {λ1, λ2, . . . , λn} be a set of n distinct real 
numbers. Also, let A be a real symmetric matrix whose graph is T , its spectrum is Λ, 
and v1 is a Duarte vertex for A. Then there exists a perturbation Ã of A such that

(i) graph of Ã is also T ,
(ii) eigenvalues of Ã are the same as eigenvalues of A,
(iii) every vertex that is a Duarte vertex for A is a Duarte vertex for Ã, and
(iv) vertex v is also a Duarte vertex for Ã.

Proof. First consider the case that A1 and A do not have any common eigenvalues. Then 
by Corollary 2.3, A and A(v) don’t have any common eigenvalues, and hence A has the 
Duarte property with respect to v. Thus we may take Ã = A and clearly (i)–(iv) hold.

Next consider the case that A1 and A have at least one common eigenvalues. Let f
be defined as in (5). By Lemma 3.2 the rows of Jac(f)

A
are linearly independent, that 

is Jac(f)
A

is onto. Note that

f
A

=
(∑

λi

2 ,

∑
λ2
i

4 , . . . ,

∑
λn
i

2n ,

∑
μi

2 ,

∑
μ2
i

4 , . . . ,

∑
μm
i

2m

)
,

where μi’s are the eigenvalues of A1. Choose Γ = {γ1, γ2, . . . , γm} such that γi is close
but not equal to μi, for i = 1, 2, . . . , m, and that Γ ∩ Λ = ∅, and Γ ∩ σ(Aj) = ∅, for 
j = 2, 3, . . . , k. Then by the Implicit Function Theorem there is a small perturbation Ã
in R2n−1 of A, such that

f ˜ =
(∑

λi
,

∑
λ2
i , . . . ,

∑
λn
i ,

∑
γi
,

∑
γ2
i , . . . ,

∑
γm
i

)
.

A 2 4 2n 2 4 2m
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That is, properties (i) and (ii) hold. Newton’s identities imply that the σ(Ã1) = Γ. Since 
the perturbation is small, σ(Ã(w)) remains close to σ(A(w)). That is, if w is a Duarte 
vertex for A, it is also a Duarte vertex for Ã. Hence property (iii) holds.

Recall that by Corollary 2.6 since A has the Duarte property with respect to vertex 
v1, A1, A2, . . . , Ak have distinct eigenvalues. If v is not a Duarte vertex for Ã, then by 
Corollary 2.3 there is a vertex u with two connected components not containing v which 
have a common eigenvalue. Since Ã has the Duarte property with respect to vertex v1, 
this could happen only if u = 1 and one of the connected components is T1 and another 
is Tj , for some j = 2, 3, . . . , k. But Ã is constructed in a way that Ã1 and Ãj do not have 
a common eigenvalue. Hence property (iv) also holds. �

Now we are ready to solve the nowhere-zero eigenbasis problem for trees.

Theorem 3.4. For a given tree T on n vertices 1, 2, . . . , n, and given distinct eigen-
value λ1, λ2, . . . , λn, there exists a real symmetric matrix A whose graph is T and its 
eigenvalues are λ1, λ2, . . . , λn, such that none of the eigenvectors of A has a zero entry.

Proof. By [4, Theorem 4.2] there is a real symmetric matrix A whose graph is T and its 
eigenvalues are λ1, λ2, . . . , λn, and A has the Duarte property with respect to vertex 1. 
Apply Theorem 3.3 to vertex 1 and a neighbor of it which is not a Duarte vertex for A, 
say vertex 2, to obtain a matrix Ã with the desired graph and spectrum. Matrix Ã has 
the Duarte property with respect to vertices 1 and 2. Replacing A by Ã, we can iterate 
this process for a vertex that is a Duarte vertex and a neighbor of it which is not a 
Duarte vertex for the new A to obtain a new Ã. In less than n iterations we stop and the 
result is a real symmetric matrix whose graph is T , its eigenvalues are λ1, λ2, . . . , λn, and 
it has the Duarte property with respect to each vertex. That is, none of its eigenvalues 
has a zero entry. �
4. The Jacobian method and connected graphs

In this section we will use the results of the previous section and several results from 
[3,4] to show the existence of a nowhere-zero eigenbasis for any set of distinct eigenvalues 
for any connected graph.

Fix T to be a tree with vertices 1, 2, . . . , n and edges ek = {ik, jk}, for k =
1, . . . , n − 1. Also fix G to be a supergraph of T with m additional edges. Let 
x1, x2, . . . , x2n−1, y1, y2, . . . , ym be independent indeterminates, and set

x = (x1, x2, . . . , x2n−1), and y = (y1, y2, . . . , ym).

Define M = M(x, y) to be the matrix with 2xi in the (i, i) position for i = 1, 2 . . . , n, 
xn+k in the (ik, jk) and (jk, ik) positions, for k = 1, 2, . . . , n − 1, yk in the (ik, jk) and 
(jk, ik) positions, where {ik, jk} is an edge of G not in T , for k = 1, 2, . . . , m, and zeros 
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elsewhere. Set N = N(x, y) = M(w); that is, N is the principal submatrix obtained 
from M by deleting its w-th row and column.

Let

tn + cn−1(x,y) tn−1 + · · · + c1(x,y) t1 + c0(x,y)

and

tn−1 + dn−1(x,y) tn−2 + · · · + d1(x,y) t + d0(x,y)

be the characteristic polynomials of M and N , respectively. Also, let g : R2n−1 ×R
m →

R
2n−1 be the polynomial map defined by

g(x,y) = (c0(x,y), . . . , cn−1(x,y), d0(x,y), . . . , dn−2(x,y)) . (8)

Let f : R2n−1 × R
m → R

2n−1 be the polynomial map defined by

f(x,y) =
(

trM
2 ,

trM2

4 , . . . ,
trMn

2n ,
trN

2 ,
trN2

4 , . . . ,
trNn−1

2(n− 1)

)
. (9)

By Newton’s identities [3, Proposition 1.2.2], there is an infinitely differentiable, in-
vertible function h : R2n−1 → R

2n−1 such that g ◦h = f . Thus, the Jacobian matrix of f
at a point x is nonsingular if and only if the Jacobian matrix of g at h(x) is nonsingular.

Theorem 4.1. [4, Theorem 3.3] Let A be a matrix whose graph is a tree T with the Duarte 
property with respect to a vertex w, and B = A(w). Let function f be defined by (9). 
Then Jac(f)

A
has full row rank.

In [3] the Implicit Function Theorem is used to show the following result.

Theorem 4.2. [3, Remark 3.3.2] Let A be a matrix whose graph is a tree T with the 
Duarte property with respect to a vertex w. Then for every supergraph G of T , there is 
a matrix Ā whose graph is G, and σ(Ā) = σ(A), and σ(A(w)) = σ(A(w)). Furthermore, 
A can be taken to be arbitrarily close to A, entry-wise.

We note for A sufficiently close to A, if a submatrix of A has distinct eigenvalues 
then so does the corresponding principal submatrix of A, and if the eigenvalues of A(i)
strictly interlace those of A then the eigenvalues of A(i) strictly interlace those of A.

Theorem 4.3. For a given connected graph G on n vertices, and given distinct eigen-
value λ1, λ2, . . . , λn, there exists a real symmetric matrix A whose graph is G and its 
eigenvalues are λ1, λ2, . . . , λn, such that none of the eigenvectors of A has a zero entry.
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Proof. Let T be a spanning tree of G. By Theorem 3.4 there is a matrix A with spectrum 
Λ whose graph is T and all of the eigenvectors of A are nowhere-zero. This means that 
A has the Duarte property with respect to each vertex. Then by Theorem 4.1 Jac(f)

A
has full row rank, for f defined by (9). By Remark 4.2 any supergraph G of T can 
be realized by a matrix A with the same spectrum as A, and the spectrum of A(v)
arbitrarily close to spectrum of A(v), for all v. That is, if an entry of an eigenvector of A
is nonzero, it remains nonzero in the corresponding eigenvector of A. Thus Ā is a matrix 
whose eigenvalues are λ1, . . . , λn, its graph is G, and none of its eigenvectors has a zero 
entry. �
5. An application

A recent paper of Ahmadi et al. [1] studies the following problem: determine, q(G), the 
smallest number of distinct eigenvalues that a symmetric matrix with graph G has. The 
join of two graphs G = (V (G), E(G)) and H = (V (H), E(H)), denoted by G ∨H, is the 
graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H) ∪ {{g, h}|g ∈ V (G), h ∈
V (H)}. In particular, in [1] it is shown that for each connected graph G, q(G ∨G) = 2, 
where G ∨G is the join of G with itself. We use Theorem 4.3 to extend this result. First, 
let us prove the following technical lemma.

Lemma 5.1. Let d1, . . . , dn be distinct real numbers in the interval (0, 1), c1, . . . , cn be 
real numbers, and f(t) =

∑n
j=1 cj

√
dj + t. If f(t) = 0 for all t in an open neighborhood 

of 0, then c1, . . . , cn = 0.

Proof. Assume that f(t) = 0 for all t of sufficiently small modulus. Then

f(0) = 0, f ′(0) = 0, . . . , f (n−1)(0) = 0. (10)

Note that for m = 1, 2, . . . we have

f (m)(0) =
n∑

j=1
αmd

−2m+1
2 cj , where αm = (−1)m−1 (2m− 3)!

22m−2(m− 2)! .

Equations (10) are equivalent to

diag(α0, . . . , αn−1)V diag(
√

d1, . . . ,
√

dn)

⎡⎢⎢⎢⎢⎣
c1
c2
...
cn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎥⎦
where α0 = 1, and V is the transpose of the n × n Vandermonde matrix for 
(1/d1), . . . , (1/dn). The matrix V is invertible since dj ’s are distinct. The fact that αm’s 
and dj ’s are all nonzero and the invertibility of V imply that cj = 0 for j = 1, 2, . . . , n. �
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Theorem 5.2. Let G and H be connected graphs on n vertices. Then q(G ∨H) = 2.

Proof. Since a matrix only has one distinct eigenvalue if and only if it is a scalar matrix, 
q(G ∨H) ≥ 2.

Let λ1, . . . , λn be n distinct real numbers in the interval (0, 1). By Theorem 4.3 there 
exist symmetric matrices A and B such that A has graph G, B has graph H, both 
A and B have eigenvalues λ1, . . . , λn and both have a nowhere zero eigenbasis. Let 
A =

∑n
j=1 λjqjq

T
j and B =

∑n
j=1 λjrjr

T
j be the spectral decompositions of A and B

respectively.
Consider

Mt =

⎡⎢⎢⎢⎣ A
∑n

j=1

(√
1 − λ2

j + t
)
qjr

T
j∑n

j=1

(√
1 − λ2

j + t
)
rjq

T
j −B

⎤⎥⎥⎥⎦ .

Note that

⎡⎢⎢⎢⎣
∑n

j=1 qjq
T
j O

O
∑n

j=1 rjr
T
j

⎤⎥⎥⎥⎦Mt

⎡⎢⎢⎢⎣
∑n

j=1 qjq
T
j O

O
∑n

j=1 rjr
T
j

⎤⎥⎥⎥⎦
is equal to

⎡⎢⎢⎢⎣ diag(λ1, . . . , λn) diag
(√

1 − λ2
1 + t, . . . ,

√
1 − λ2

n + t
)

diag
(√

1 − λ2
1 + t, . . . ,

√
1 − λ2

n + t
)

diag(λ1, . . . , λn)

⎤⎥⎥⎥⎦ .

Thus, Mt is similar to

n⊕
j=1

⎡⎣ λj

√
1 − λ2

j + t√
1 − λ2

j + t −λj

⎤⎦ .

This matrix has eigenvalues ±
√

1 + t. Hence q(Mt) = 2.
Since each of q1, . . . , qn, r1, . . . , rn is nowhere zero, Lemma 5.1 implies that there is a 

t such that 
∑n

j=1

(√
1 − λ2

j + t
)
qjr

T
j has no entry equal to 0. For such t, the graph of 

Mt is G ∨H. Hence q(G ∨H) = 2. �
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