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of a maximum matching) of a graph is given. More precisely, it 
is shown that the graphs G of order n whose matching number 
is k are precisely those graphs with the maximum skew rank 
2k such that for any given set of k distinct nonzero purely 
imaginary numbers there is a real skew-symmetric matrix A
with graph G whose spectrum consists of the given k numbers, 
their conjugate pairs and n − 2k zeros.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A matching in a graph G is a set of vertex-disjoint edges. A maximum matching
in G is a matching with the maximum number of edges among all matchings in G. 
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A perfect matching in a graph G on n vertices is a maximum matching consisting of n2
edges. Matchings are well-studied combinatorial objects with practical applications such 
as Hall’s marriage theorem (1935). For a full treatment of matchings see [6]. In 1947 
Tutte gave necessary and sufficient conditions for a graph to have a perfect matching.

Theorem 1.1. (See [7].) A graph G has a perfect matching if and only if for each vertex 
subset S of G, the number of odd components of G − S is at most |S|.

The matching number, denoted by match(G), of a graph G is the number of edges 
in a maximum matching in G. So Theorem 1.1 characterizes all graphs G on n vertices 
with match(G) = n

2 . In this article we give another set of necessary and sufficient con-
ditions for a graph G to have a perfect matching. These conditions concern eigenvalues 
of skew-symmetric matrices corresponding to G. For a given positive integer k, we also 
give necessary and sufficient conditions for a graph G to have match(G) = k.

We begin by introducing some required terminology as given in [2]. Let A = [aij ] be 
an n × n real skew-symmetric matrix. The order of A is n, and we denote it by |A|. 
The graph of A, denoted by G(A), has the vertex set {1, 2, . . . , n} and the edge set 
{{i, j} : aij �= 0, 1 ≤ i < j ≤ n}. The set S−(G) denotes the set of all real skew-symmetric 
matrices whose graph is G. The maximum skew rank of G, denoted by MR−(G), is defined 
to be max{rank(A) : A ∈ S−(G)}. The maximum skew rank and the matching number 
of a graph are related as follows.

Theorem 1.2. (See [4, Theorem 2.5].) MR−(G) = 2match(G) for all graphs G.

The rank of a real symmetric or skew-symmetric matrix can be determined by its 
nonzero eigenvalues as follows.

Lemma 1.3. (See [1, Corollary 2.5.14].) Let A be a real symmetric or skew-symmetric 
matrix. Then rank(A) equals to the number of nonzero eigenvalues of A.

A full matching in a graph G on n vertices is a matching M such that 2|M | = n or n −1, 
i.e., match(G) = �n

2 �. In Section 2 we determine existence of a full matching of G using 
nonzero eigenvalues of matrices in S−(G). In Section 3, for a given positive integer k, we 
give necessary and sufficient conditions for G, in terms of nonzero eigenvalues of matrices 
in S−(G), to have match(G) = k.

To study matchings in connected graphs we first study matchings in trees. A certain 
kind of trees called NEB trees is introduced in [2] and it has been shown that any NEB 
tree has a full matching. We introduce required definitions and notation for NEB trees 
as given in [2].

Notation: Let T be a tree, and let T (v) denote the forest obtained from T by deleting 
vertex v. Also, let T ′ = Tw(v) denote the connected component of T (v) that contains 



K. Hassani Monfared, S. Mallik / Linear Algebra and its Applications 496 (2016) 407–419 409
Fig. 1. Tree T with subgraphs T (v1, . . . , vk) and Tvk
(v1, . . . , vk−1).

Fig. 2. Tree T with subgraphs T (1, 2) and T3(1, 2).

the neighbor w of v. T ′ is a tree, hence it makes sense to consider T ′(w) = (Tw(v)) (w), 
the forest obtained from T ′ by deleting vertex w, and T ′′ = (Tw(v))u (w), the connected 
component of T ′(w) that contains the neighbor u of w, and so on. For simplicity, we 
denote the tree (· · · (((Tv2(v1))v3(v2))v4(v3)) · · · )vk(vk−1) by Tvk(v1, v2, . . . , vk−1), and 
the forest ((· · · (((Tv2(v1))v3(v2))v4(v3)) · · · )vk(vk−1))(vk) by T (v1, . . . , vk). See Fig. 1.

Example 1.4. Consider the graph in Fig. 2. Delete vertex 1 and consider the connected 
component that contains the vertex 2. This tree is denoted by T2(1). Then in this tree 
delete vertex 2. The obtained forest is denoted by T (1, 2). The connected component of 
T (1, 2) that contains the vertex 3 is denoted by T3(1, 2).

Definition 1.5. (See [2, Definition 2.3].) Let T be a tree on n vertices, and w be a vertex 
of T . T is defined to have nearly even branching property at w (in short, T is NEB at w) 
as follows. If n = 1, T is NEB at w. If n ≥ 2, T is NEB at w if the following conditions 
are satisfied:
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Fig. 3. Subtree T3(1, 2) is a minimal non-NEB subtree of T with respect to vertex 1.

(i) T (w) has exactly one odd component if n is even, and T (w) has no odd component 
if n is odd; and

(ii) for each neighbor v of w in T , Tv(w) is NEB at v.

Observation 1.6. If a tree T is not NEB with respect to a vertex v, then there is a vertex 
w such that T (w) has at least two odd components.

Proof. Let v1 = v. If T (v1) has at least two odd components, then w = v1. Oth-
erwise there are vertices v2, . . . , vk such that T (v1, v2, . . . , vk) has at least two odd 
connected components. Let w = vk. Now T (w) has one more branch (at vk−1) than 
Tvk(v1, v2, . . . , vk−1), thus it has at least two odd components. �

For a vertex v, let N(v) denote the set of all neighbors of v. Let T be a tree which is 
not NEB at a vertex v1. There exists v2, v3, . . . , vk such that Tvk(v1, v2, . . . , vk−1) is not 
NEB at vk, but every Tw(v1, v2, . . . , vk) is NEB at w for all w ∈ N(vk) \ {vk−1}. We call 
such Tvk(v1, . . . , vk−1) a minimal non-NEB subtree (with respect to v1).

Example 1.7. Tree T shown in Fig. 3 is not NEB at vertex 1 because T3(1, 2) is not NEB 
with respect to vertex 3. But T4(1, 2, 3) and T5(1, 2, 3) both are NEB with respect to 4
and 5, respectively. Hence, T3(1, 2) is a minimal non-NEB subtree of T with respect to 
vertex 1.

The following theorem gives the most important known result we use in this article. 
It shows that if a tree T is NEB at a vertex, then T has a full matching.

Theorem 1.8. (See [2, Corollary 5.3].) Let G be a connected graph on n vertices and λ1, 
λ2, . . . , λn distinct real numbers such that

λj = −λn+1−j ,

for all j = 1, . . . , n. If G has a spanning tree which is NEB at a vertex, then match(G) =
�n

2 � and there exists a matrix A ∈ S−(G) with eigenvalues iλ1, . . . , iλn.
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Fig. 4. Vertex w1 is not matched with vertex v where Tw1 (v) is an odd component.

2. Characterizations of NEB trees and connected graphs with a perfect matching

Theorem 1.8 shows that if a tree T is NEB at a vertex, then T has a full matching. It 
is natural to ask if the converse is true. In the next theorem we show that the converse 
is indeed true.

Theorem 2.1. Let T be a tree on n vertices. Tree T is NEB with respect to some vertex 
v if and only if match(T ) = �n

2 �.

Proof. The forward direction is proved in [2, Observation 3.8]. For the backward direc-
tion, assume T is not NEB with respect to any vertex. By Observation 1.6 there is a 
vertex v of T such that T (v) has at least two odd components. Let Tw1(v) and Tw2(v)
be two such odd components.

There are two cases:

Case 1: n is even. Thus, �n
2 � =

n
2 , that is, T has a perfect matching, and exactly one of 

the neighbors of v is matched with v. That is, at least one of the w1 or w2 are 
not matched with v. Without loss of generality, assume that w1 is the vertex 
which is not matched (see Fig. 4). Then Tw1(v) is a tree with odd number of 
vertices, hence it has a vertex which is not matched. Furthermore, since T has 
an even number of vertices, it has at least 2 vertices which are not matched. 
That contradicts the assumption that T has a perfect matching.

Case 2: n is odd. Fix v1 and find a minimal non-NEB subtree of T (with respect to v1), 
say Tvk(v1, . . . , vk−1) = T ′. Let v = vk. Since T ′ is a minimal non-NEB subtree 
of T , T ′(v) has at least two odd components.
(a) T ′(v) has at least 3 odd components, then similar to Case 1, v is matched 

with at most one of its neighbors in an odd component, and other two 
odd components each have at least one vertex which is not matched. Hence 
match(T ) < �n

2 �.
(b) T ′(v) has exactly two odd components, say T ′

w1
(v) and T ′

w2
(v). Now, con-

sider Tv(w1) (see Fig. 5), which has even number of vertices. If Tv(w1) is 
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Fig. 5. Tree T and subtrees Tv(w1) and Tw1 (v).

NEB at v, then T is NEB at w1 by minimality of T ′. Otherwise, Tv(w1) has 
at least two vertices which are not matched, by Case 1. Furthermore, since 
T has odd number of vertices, then it has at least 3 vertices which are not 
matched. Thus match(T ) < �n

2 �. �
We get the following corollary from Theorem 1.8 and Theorem 2.1.

Corollary 2.2. Let T be a tree on n vertices. Then match(T ) = �n
2 � if and only if there 

is a real skew-symmetric matrix A with distinct eigenvalues whose graph is T .

Below we mention a rather easy exercise in graph theory, and we will use it to extend 
the above result to connected graphs.

Lemma 2.3. Let G be a connected graph on n vertices. Then match(G) = �n
2 � if and only 

if G has a spanning tree T with match(T ) = �n
2 �. More specifically, for any matching M

(of any size) of G, there is a spanning tree T of G which includes all the edges of M .

Proof. If a spanning tree of G has a full matching, then G has a full matching. Fix a 
matching M of G. Every cycle of G contains an edge which is not in M . Delete one such 
edge from G, and repeat this process with the obtained graph which is still connected, 
it contains all edges of M , and it has at least one less cycle than G. The process stops 
with a connected acyclic graph (tree) on n vertices, since G has finitely many cycles. 
The obtained graph is a spanning tree of G which contains all edges of M . �
Theorem 2.4. Let G be a connected graph on n vertices. If match(G) = �n2 �, then for any 
n distinct real numbers λ1, . . . , λn such that λj = −λn+1−j for all j = 1, . . . , n, there 
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is a matrix A ∈ S−(G) with eigenvalues iλ1, . . . , iλn. Conversely if there is a matrix 
A ∈ S−(G) with distinct eigenvalues, then match(G) = �n2 �.

Proof. Assume that match(G) = �n
2 �. By Lemma 2.3 graph G has full matching if and 

only if it has a spanning tree T with a full matching. Also by Theorem 2.1, T has a 
full matching if and only if T is NEB with respect to a vertex. Thus, by Theorem 1.8, 
G realizes a real skew-symmetric matrix A with the given eigenvalues.

Conversely suppose that there is a real skew-symmetric matrix A with distinct eigen-
values whose graph is G. Then, by Lemma 1.3 and Theorem 1.2,

2
⌊n

2

⌋
= rank(A) ≤ MR−(G) = 2match(G).

That is, 
⌊
n
2

⌋
≤ match(G). Since match(G) ≤

⌊
n
2

⌋
for any graph G, we have match(G) =⌊

n
2

⌋
. �

Theorem 2.4 immediately implies the following corollary giving a spectral condition 
for a connected graph to have a perfect matching or a near perfect matching.

Corollary 2.5. Let G be a connected graph. Then G has a full matching if and only if 
there is a matrix A ∈ S−(G) with distinct eigenvalues.

3. Spectral characterization of graphs with arbitrary matching number

It is known that match(G) = k if and only if MR−(G) = 2k, i.e., G realizes a 
skew-symmetric with 2k nonzero eigenvalues by Theorem 1.2 and Lemma 1.3. In this 
section we prove that these eigenvalues can be any k distinct nonzero purely imaginary 
numbers and their conjugate pairs. Similar to approaches in [2,3] we are going to use the 
Jacobian method, so we need to define an appropriate function and show its Jacobian is 
nonsingular when it is evaluated at some point.

Let G be a graph on n vertices with matching number k, and k + m edges where 
m > 0. Fix a maximum matching M of G and without loss of generality assume M =
{{1, 2}, {3, 4}, . . . , {2k− 1, 2k}}. Assume the m edges of G that are not in M are of the 
forms el = {il, jl}, for l = 1, 2, . . . , m. Let x1, . . . , xk, y1, . . . , ym be k + m independent 
indeterminates and set

x = (x1, x2, . . . , xk), and y = (y1, y2, . . . , ym).

We define a skew-symmetric matrix of variables where xj are in the positions correspond-
ing to the edges in M, and yl are in the positions of the edges not in M. Let M = M(x, y)
be an n × n skew-symmetric matrix whose (2j − 1, 2j)-entry is xj , (2j, 2j − 1)-entry is 
−xj , for j = 1, 2, . . . , k, and for l = 1, 2, . . . , m let the (il, jl)-entry of M to be yl where 
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il < jl, and −yl, otherwise. Note that Since match(G) = k, G − {1, 2, . . . , 2k} has no 
edges. Thus M has the following form.

M =
[

N L

−LT O

]
,

where N is the upper left 2k× 2k block of M , O is the square zero matrix of size n − 2k, 
and L contains only yl’s and zeros. Note that N contains zero entries, all of the xj’s, and 
some or none of yl’s. In particular, the (2j−1, 2j)-th entry of N is xj , for j = 1, 2, . . . , k.

Example 3.1. Consider the following graph G on 6 vertices with 6 edges and
match(G) = 2.

1 2

43

5

6

G

For the above G, M = {{1, 2}, {3, 4}} is a maximum matching. So M = M(x, y) would 
have the following form.

M = M(x,y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 x1 0 0 0 0
−x1 0 y1 y2 y3 0

0 −y1 0 x2 0 0
0 −y2 −x2 0 y4 y5

0 −y3 0 −y4 0 0
0 0 0 −y5 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A real evaluation A of M is obtained by assigning real values to indeterminates in x
and y. Clearly such evaluation A is a skew-symmetric matrix whose graph is a subgraph 
of G and the eigenvalue of A are purely imaginary occurring in conjugate pairs and 
some zeros. Define the following ordering of the purely imaginary axis of the complex 
plane: for two numbers a and b on the imaginary axis of the complex plane let a ≥ b if 
−ai ≥ −bi and the equality holds if and only if a = b.

Define F : Rk+m → R
n by

F (x,y) =
(
− iλ1(M),−iλ2(M), . . . ,−iλn(M)

)
,

where λj(M) is the j-th largest eigenvalue of M . Note that, some of the middle compo-
nents of F might be zero. Furthermore, since λj(M) = −λn−j+1(M) for j = 1, . . . , n, 
F is completely defined by half of its components, say the ones in upper half-plane and 
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zeros. Moreover, M has at most k nonzero eigenvalues in the upper half-plane since 
MR−(G) = 2match(G) = 2k. That is, F is completely determined by its first k compo-
nents.

Define f : Rk+m → R
k by

f(x,y) =
(
− iλ1(M),−iλ2(M), . . . ,−iλk(M)

)
.

Let λ1 > λ2 > . . . > λk > 0 be k distinct nonzero purely imaginary numbers. Set 
a = (−i λ1, −i λ2, . . . , −i λk) ∈ R

k, b = (0, . . . , 0) ∈ R
m and A = M(a, b). Then A is the 

block diagonal matrix

A =
k⊕

j=1

[
0 −iλj

iλj 0

]
⊕On−2k. (3.1)

That is,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −iλ1 0 0 · · · 0 0
iλ1 0 0 0 · · · 0 0
0 0 0 −iλ2 · · · 0 0
0 0 iλ2 0 · · · 0 0

. . .
...

...
...

...
. . .

...
...

. . .
0 0 0 0 . . . 0 −iλk

0 0 0 0 . . . iλk 0

O

O O

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It easy to check that the nonzero eigenvalues of A are ±λ1, ±λ2, . . . , ±λk and conse-
quently f

∣∣∣
A

= f(a, b) = (−i λ1, −i λ2, . . . , −i λk). We want to show that the Jacobian 

of f evaluated at the point (a, b) is nonsingular. It is known that the eigenvalues and 
eigenvectors of a matrix with distinct eigenvalues are continuous differentiable functions 
of the entries of the matrix [8]. The following lemma shows the derivative of the nonzero 
eigenvalues of a skew-symmetric matrix with 2k distinct nonzero eigenvalues and n − 2k
zero eigenvalues with respect to the entries of the matrix, in terms of the entries of their 
corresponding eigenvectors.

Lemma 3.2. Let A be an n × n real skew-symmetric matrix with distinct nonzero 
eigenvalues λ1, λ2, . . . , λk in the upper half-plane, and corresponding unit eigenvectors 



416 K. Hassani Monfared, S. Mallik / Linear Algebra and its Applications 496 (2016) 407–419
v1, v2, . . . , vk. Let A(t) = A + tErs − tEsr, for t ∈ (−ε, ε), where ε is a small pos-
itive number. Also, let λj(t) be the j-th largest eigenvalue of A(t) with corresponding 
eigenvector vj(t), and vjr denote the r-th entry of the vector vj. Then

dλj(t)
dt

∣∣∣
t=0

= 2i Im(vjrvjs),

where Im(z) denotes the imaginary part of the complex number z.

Proof. Note that A(t), λj(t) and vj(t) are continuous functions of t, so A(0) = A, 
λj(0) = λj , vj(0) = vj , and when t → 0 we have

A(t) → A,

λj(t) → λj ,

vj(t) → vj .

Furthermore,

Ȧ(0) = Ers −Esr,

and

A(t)vj(t) = λj(t)vj(t).

Differentiating both sides with respect to t we get

Ȧ(t)vj(t) + A(t)v̇j(t) = λ̇j(t)vj(t) + λj(t)v̇j(t).

Set t = 0, then

(Ers −Esr)vj + Av̇j(0) = λ̇j(0)vj + λj v̇j(0).

Multiplying both sides by vj
T from left we get

vj
T (Ers − Esr)vj + vj

TAv̇j(0) = λ̇j(0)vj
Tvj + λjvj

T v̇j(0).

Since A is skew-symmetric Avj = −λjvj . Hence

vj
TA = (ATvj)T = (−Avj)T = (−(−λjvj))T = λjvj

T .

Also,

vj
T (Ers − Esr)vj = vjrvjs − vjsvjr = 2i Im(vjrvjs).
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Thus

2i Im(vjrvjs) + λjvj
T v̇j(0) = λ̇j(0)vj

Tvj + λjvj
T v̇j(0).

The second term in left hand side is equal to the second term in right hand side, and 
vj ’s are unit vectors, that is, vj

Tvj = 1. Hence

2i Im(vjrvjs) = λ̇j(0). �
Corollary 3.3. For M , A, and λj’s defined as above, let r = 2l− 1, s = 2l, and xl be the 
entry in the (r, s) position of M . Then we have

∂

∂xl

(
− iλj(M)

) ∣∣∣
A

=
{

1, if j = l,
0, otherwise.

Proof. Note that for A we have

vj = 1√
2

[
0 · · · 0 i −1 0 · · · 0

]T
,

where the nonzero entries are at 2j − 1 and 2j positions. Also note that

∂

∂xl

(
λj(M)

) ∣∣∣
A

= dλj(t)
dt

∣∣∣
t=0

.

Then by Lemma 3.2

∂

∂xl

(
− iλj(M)

) ∣∣∣
A

= (−i)2i Im
(
vj2l−1vj2l

)
=

{
2 Im( −i√

2
−1√

2), if j = l,
0, otherwise.

=
{

1, if j = l,
0, otherwise.

This completes the proof. �
Corollary 3.4. For the matrix A and function f defined as above we have

Jac(f)
∣∣∣
A

= Ik,

where Ik denotes the k × k identity matrix. Hence, Jac(f) 
∣∣∣ is nonsingular.

A
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Now we are ready to prove the main result of this section which characterizes the 
graphs with matching number k. We will use the Implicit Function Theorem, mentioned 
below. For a full treatment of the topic see [5].

Theorem 3.5 (Implicit Function Theorem). Let F : Rs+r → R
s be a continuously differ-

entiable function on an open subset U of Rs+r defined by

F (x,y) = (F1(x,y), F2(x,y), . . . , Fs(x,y)),

where x = (x1, . . . , xs) ∈ R
s, y = (y1, . . . , yr) ∈ R

r, and Fi’s are real valued multivariate 
functions. Let (a, b) be an element of U with a ∈ R

s and b ∈ R
r, and c be an element 

of Rs such that F (a, b) = c. If

Jacx(F )
∣∣∣
(a,b)

=
[
∂Fi

∂xj

∣∣∣
(a,b)

]
s×s

is nonsingular, then there exist an open neighborhood V of a and an open neighborhood 
W of b such that V × W ⊆ U such that for each y ∈ W there is an x ∈ V with 
F (x, y) = c. Furthermore, for any (ā, ̄b) ∈ V ×W such that F (ā, ̄b) = c, Jac(F ) 

∣∣∣
(ā,b̄)

is also nonsingular.

Theorem 3.6. Let G be a graph on n vertices, and λ1 > λ2 > . . . > λk > 0 be k distinct 
nonzero purely imaginary numbers where 2k ≤ n. Then match(G) = k if and only if

(a) there is a matrix A ∈ S−(G) whose eigenvalues are ±λ1, ±λ2, . . . , ±λk and n − 2k
zeros, and

(b) for all matrices A ∈ S−(G), A has at most 2k nonzero eigenvalues.

Proof. Assume that (a) and (b) hold. Then (a) and Lemma 1.3 imply that MR−(G) ≥
2k. Furthermore (b) and Lemma 1.3 imply that MR−(G) ≤ rankA = 2k. Thus 
MR−(G) = 2k. By Theorem 1.2 we have match(G) = MR−(G)

2 = 2k
2 = k.

Now assume that match(G) = k. If G is a disjoint union of edges, then the matrix A
given by (3.1) has the desired properties. Assume that there is an edge which is not in a 
maximum matching, that is, G has k + m edges where m > 0. Consider the function f , 
and the matrices M and A as above. Note that f

∣∣∣
A

= (−iλ1, −iλ2, . . . , −iλk), and 

Jac(f) 
∣∣∣
A

is nonsingular, by Corollary 3.4. Then by the Implicit Function Theorem 

(Theorem 3.5) there are open sets U ∈ R
k and V ∈ R

m, such that (−iλ1, . . . , −iλk) ∈ U

and (0, . . . , 0) ∈ V , and for any (ε1, . . . , εm) ∈ V , there is a (−iλ̂1, . . . , −iλ̂k) ∈ U close 
to (−iλ1, . . . , −iλk), such that

f(−iλ̂1, . . . ,−iλ̂k, ε1, . . . , εm) = (−iλ1, . . . ,−iλk).
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Since V is an open neighborhood of (0, . . . , 0) ∈ R
m, one can choose all εi �= 0. Let 

Â = M(−iλ̂1, . . . , −iλ̂k, ε1, . . . , εm). Then eigenvalues of A are (−iλ1, −iλ2, . . . , −iλk)
and graph of A is G. That is (a) holds. Also, by Theorem 1.2 and Lemma 1.3, 
(b) holds. �

Note that for a given graph G with matching number k, there might exist skew-
symmetric matrices with less than 2k nonzero eigenvalues whose graph is G. One easy 
example is the complete bipartite graph Kn,n, n ≥ 2. The matching number of Kn,n is n

and its skew-adjacency matrix A = xyT −yxT , where x =
[
1 1

]T
and y =

[
1 2 · 1

]T
and 1 is the all ones vector of order n, has only two nonzero eigenvalues ±ni.

Remark 3.7. Theorem 3.6 shows that the graphs G of order n whose matching number is 
k are precisely those graphs with the maximum skew rank 2k such that for any given set 
of k distinct nonzero purely imaginary numbers there is a real skew-symmetric matrix 
A with graph G whose spectrum consists of the given k numbers, their conjugate pairs 
and n − 2k zeros.
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