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Let λ1 < · · · < λn and τ1 < · · · < τn−2 be 2n − 2 real numbers that satisfy
the strict second-order Cauchy interlacing inequalities λi < τi < λi+2 for i =
1, 2, . . . , n−2 and the nondegeneracy conditions λi+1 �= τi for i = 1, 2, . . . , n−
2. Given a connected graph G on n vertices with adjacent vertices i and j , it is
proven that there is a real symmetric matrix A whose graph is G such that A
has eigenvalues λ1, λ2, . . . , λn and A({i, j}) has eigenvalues τ1, τ2, . . . , τn−2,
provided some necessary combinatorial conditions on G are satisfied. We also
provide generalizations when the two deleted vertices are not adjacent, as well as
interpretation of the results in terms of perturbing one or two diagonal entries.

Keywords: graph; symmetric matrix; structured inverse eigenvalue problem; the
Duarte property; the Jacobian method; Cauchy interlacing inequalities

AMS Subject Classifications: 05C50; 65F18

1. Introduction

Structured inverse eigenvalue problems are of tremendous interest and arise in various areas
of research. The type of problem addressed here arises in the study of the dynamics of a
system of masses and springs.[1–5] In its simplest form, the mathematical model seeks a
real symmetric n×n matrix whose eigenvalues are prescribed and the eigenvalues of a given
(n − 1) × (n − 1) principal submatrix are also prescribed. Physically, the problem asks if it
is possible to design a spring-mass system such that the system has prescribed fundamental
frequencies (that is, the corresponding matrix A has prescribed eigenvalues), and the
subsystem obtained by removing one spring and one mass has prescribed fundamental
frequencies (that is, the trailing (n − 1) × (n − 1) principal submatrix of A has prescribed
eigenvalues).

Throughout this paper, we denote specific submatrices as follows. Let A be an m × n
matrix. Assume α ⊆ {1, 2, . . . , m} and β ⊆ {1, 2, . . . , n}. Then

A[α;β] is the matrix obtained from A by keeping the rows indexed by α and the
columns indexed by β; and
A(α;β) is the matrix obtained from A by deleting the rows indexed by α and the
columns indexed by β.

∗Corresponding author. Email: k1monfared@gmail.com

© 2015 Taylor & Francis
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2 K.H. Monfared and B.L. Shader

We abbreviate A[α;α] to A[α] and A(α;α) to A(α). In case α or β is a singleton set, we
omit the curly brackets. For example, we write A(1) for A({1}). Also in the case that α or
β is empty, we may not write them. For example, A( ; 1) is the submatrix obtained from
A by removing the first column. In case α = β, we use the same notation for a graph G,
where indices denote vertices. For example, G[X ] denotes the subgraph of G induced on
the vertex set X . For other notation and definitions we follow.[6]

Let A = [
ai j

]
be an n × n real symmetric matrix. The graph G(A) of A is the graph

on vertices 1, 2, . . . , n with i adjacent to j if and only if ai j �= 0 and i �= j . Note that the
graph does not depend on the diagonal entries of A.

The λ–μ problem asks if given a graph G of order n, real numbers λ1 ≤ · · · ≤ λn ,
real numbers μ1 ≤ · · · ≤ μn−1 and i ∈ {1, 2, . . . , n} does there exist a real symmetric
matrix A whose graph is G such that A has eigenvalues λ1, . . . , λn and A(i) has eigenvalues
μ1, . . . , μn−1? In 1989, Duarte solved the problem for any matrix whose graph is a tree
under the necessary assumption that the μ’s interlace the λ’s, that is,

λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤ μn−1 ≤ λn, (1)

and the additional assumption that the μ’s are distinct from λ’s.[7] The authors of this paper
have recently extended that result to any connected graph with no multiple eigenvalues.[6]
The inequalities in (1) are called the first order Cauchy interlacing inequalities.

One way to generalize this inverse eigenvalue problem is to ask if there is an analogue
for an n × n matrix and one of its (n − 2) × (n − 2) submatrices. More precisely, the λ–τ

problem asks if given a graph G of order n, real numbers λ1 ≤ · · · ≤ λn , real numbers
τ1 ≤ · · · ≤ τn−2 and distinct i and j in {1, 2, . . . , n}, does there exist a real symmetric matrix
A whose graph is G such that A has eigenvalues λ1, . . . , λn and A({i, j}) has eigenvalues
τ1, . . . , τn−2?

Throughout this paper, we assume that the λ’s and the τ ’s are distinct and that no
λi and τ j are equal. Under this assumption, we define the λ–τ sequence to be X = x1,

x2, . . . , x2n−2, where x1 < x2 < · · · < x2n−2 and {x1, x2, . . . , x2n−2} = {λ1, λ2, . . . , λn}∪
{τ1, τ2, . . . , τn−2}.

In Section 2, we introduce some necessary conditions for the λ–τ problem to have a
solution when the graph is a tree. In Section 3, we show that the λ–τ problem for adjacent
vertices i and j and G being a tree has a solution whenever the λ’s and μ’s are distinct and
certain necessary conditions are met. This is done by reducing the λ–τ problem to two λ–μ

problems.[6] In Section 4, we use the Jacobian method, also used in [6], to extend the result
to connected graphs. In Section 5, we extend the results of the previous two sections to the
case when the vertices i and j are not adjacent. Finally, in Section 6, we use the old and
new results to answer a question regarding the eigenvalues of matrix A and Â, where Â is
obtained from A by perturbing one or two diagonal entries.

2. Properties of the λ–τ sequence

In this section, we derive several properties of the λ–τ sequence of an n × n symmetric
matrix A = [

akl
]

and a principal submatrix A({i, j}). Throughout this section, λ1 ≤ λ2 ≤
· · · ≤ λn denote the eigenvalues of A and τ1 ≤ τ2 ≤ · · · ≤ τn−2 denote the eigenvalues of
A({i, j}).
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Linear and Multilinear Algebra 3

2.1. Restrictions on the λ–τ sequence

The Cauchy interlacing inequalities [8] describe some restrictions on the eigenvalues of A
and A({i, j}).

Proposition 2.1 Let A be an n × n real symmetric matrix and A({i, j}) be a principal
submatrix of A of order n − 2. Then the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of A and the
eigenvalues τ1 ≤ τ2 ≤ · · · ≤ τn−2 of A({i, j}) satisfy

λi ≤ τi ≤ λi+2. (2)

We refer to the inequalities in (2) as the second-order Cauchy interlacing inequalities.
We say (A, A({i, j})) is a nondegenerate pair if all inequalities in (2) are strict and no
λk and τl are equal. Let X be the λ–τ sequence of (A, A({i, j})). If (A, A({i, j})) is a
nondegenerate pair, we say X is a nondegenerate sequence. The inequalities (2) imply some
properties about the λ–τ sequence of (A, A({i, j})). First we have the following.

Lemma 2.2 Let X = x1, x2, . . . , x2n−2 be the λ–τ sequence of (A, A({i, j})). Assume
that X is nondegenerate. Then no three consecutive xi ’s are eigenvalues of A and no three
consecutive xi ’s are eigenvalues of A({i, j}).

Proof Consider λk , λk+1 and λk+2. By (2), λk ≤ τk ≤ λk+2. Thus λk , λk+1 and λk+2 do
not occur consecutively in the λ–τ sequence. The case of the eigenvalues of A({i, j}) is
similar. �

If τk and τk+1 occur consecutively in the λ–τ sequence X , then we say that (τk, τk+1)

is a τ -pairing. If λk and λk+1 occur consecutively in the λ–τ sequence X , then we say
that (λk, λk+1) is a λ-pairing. Note by (2) that if (τk, τk+1) = (xl , xl+1) is a τ -pairing,
then xl−1 = λk+1 and xl+2 = λk+2. Also if (λk, λk+1) = (xl , xl+1) is a λ-pairing, then
xl−1 = τk−1 and xl+2 = τk .

Lemma 2.3 Let X be the λ–τ sequence of (A, A({i, j})) and assume that X is nondegen-
erate. The first (that is, the one with smallest xi ’s) and the last pairings of X are λ-pairings.

Proof Suppose (τk, τk+1) = (xl , xl+1) is a τ -pairing of X . Then, xl−1 = λk+1 and thus
{x1, x2, . . . , xl−1} = {λ1, λ2, . . . , λk+1} ∪ {τ1, τ2, . . . , τk−1} contains two more λ’s than
τ ’s. Hence, there is a λ-pairing in {x1, x2, . . . , xl−1}, that is, one that precedes (τk, τk+1).
Similarly, there is a λ-pairing in X that follows (τk, τk+1). �

Additionally, we have the following.

Lemma 2.4 Let X be a nondegenerate λ–τ sequence. For any two τ -pairings in X there
is a λ-pairing between them and for any two λ-pairings in X there is a τ -pairing between
them.

Proof Consider two consecutive τ -pairings in X , (τk, τk+1) = (xr , xr+1) and (τl , τl+1) =
(xs, xs+1). Then
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4 K.H. Monfared and B.L. Shader

{xr+2, xr+3, . . . , xxs−1} = {λk+2, λk+3, . . . , λl+1} ∪ {τk+2, τk+3, . . . , τl−1}.
Thus, {xr+2, xr+3, . . . , xxs−1} has two more λ’s than τ ’s and hence contains a λ-pairing.
Similarly there is a τ -pairing between any two λ-pairings. �

Lemmas 2.2–2.4 give restrictions on the choice of eigenvalues of A and A({i, j}). A
simple way to summarize the lemmas is that the τ -pairings of A and A({i, j}) interlace the
λ-pairings. Next, we use this nice property of the pairings to partition X into two sets of
desired sizes such that each set includes (strictly) interlacing λ’s and τ ’s. The two sets will
later be used to reduce the λ–τ problem to two λ–μ problems.

Lemma 2.5 Let X be a nondegenerate λ–τ sequence with exactly k τ -pairings and let r
and s be positive integers such that r + s = n and r, s ≥ k + 1. Then, X can be partitioned
into two sets such that the first set has r λ’s and r − 1 τ ’s and the second set s λ’s and s − 1
τ ’s. Furthermore, in each set the τ ’s and the λ’s satisfy the first order Cauchy interlacing
inequalities (1).

Proof We give an algorithm for constructing such a partition (B, C). Since there are k τ -
pairings, by Lemmas 2.3 and 2.4 there are k+1 λ-pairings. First, arbitrarily assign one of the
elements in each pairing to B and the other one to C . This, by Lemmas 2.3 and 2.4, results in
two sets each with k +1 λ’s that are interlaced by k τ ’s. Let X ′ = {x ′

1, x ′
2, . . . , x ′

2(n−k−1)} =
X \ (B ∪C). Thus, as long as we assign both of x ′

2l−1 and x ′
2l to B or both to C , the τ ’s in B

(respectively C) will interlace the λ’s in B (respectively C). Hence, by assigning r − k − 1
of these pairs to B and the remaining s − k − 1 to C , we obtain a partition with the desired
properties.

Consider two consecutive pairings in X . The portion of X between the two pairing is
of one of the following forms:

λi < λi+1 < τi < λi+2 < τi+1 < λi+3 < · · · < τr−1 < λr+1 < τr < τr+1,

or
τi < τi+1 < λi+2 < τi+2 < λi+3 < τi+3 < · · · < λr < τr < λr+1 < λr+2.

So, we can always assign pairs of consecutive elements of the form τ j < λk or λ j < τk to
either sets and still the τ ’s interlace the λ’s. We can assign enough such pairs to each set
in order to get the correct sizes. Thus, the claim holds and the two sets satisfy the desired
conditions. �

Example 2.6 Let k = 2 and

X : λ1 < τ1 < λ2 < λ3 < τ2 < λ4 < τ3 < τ4 < λ5 < λ6 < τ5 < τ6 < λ7 < λ8 .

Note that there are two τ -pairings in X . We want to partition X into two sets, B and C of
λ’s interlaced by τ ’s, where |B| = 5 ≥ 2 · 2 + 1 and |C | = 9 ≥ 2 · 2 + 1. One choice is to
assign the first element in each pairing to B and the second element to C . Hence,

B : λ2 < τ3 < λ5 < τ5 < λ7,

and

C : λ3 < τ4 < λ6 < τ6 < λ8 .
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Linear and Multilinear Algebra 5

Finally

X ′ : λ1 < τ1 < τ2 < λ4.

Since B already has five elements, we assign the remaining two pairs in X ′ to C so that
it has nine elements. That is,

B : λ2 < τ3 < λ5 < τ5 < λ7,

and

C : λ1 < τ1 < λ3 < τ2 < λ4 < τ4 < λ6 < τ6 < λ8 .

Example 2.7 A concrete example is provided here. Let λ’s be 0 − 6,−5,−2,−1, 3 and 4
and let τ ’s be −4,−3, 1 and 2. Then, using the above procedure we can get two sequences
of λ’s and τ ’s such that the τ ’s strictly interlace the λ’s in each sequence. One such partition
is:

−6,−4,−2, 1, 3,

and
−5,−3,−1, 2, 4,

where bold numbers are the τ ’s.

2.2. Graph restrictions

In this section, we shall show that in addition to the restrictions on the λ–τ sequence given
in Lemmas 2.2–2.4, there are restrictions related to the underlying graph. Throughout the
remainder of this section, we assume that A = [

ai j
]

is a real n × n symmetric matrix,
the graph of A is a tree T and r and s are adjacent vertices in T (Figure 1). Removing
the edge {r, s} from T results in a graph with two connected components. We let Vr be the
set of vertices in the connected component that contains r and Vs be the set of vertices of
the other connected component. We let α1, α2, . . . , αir be the vertices in Vr adjacent to r
and β1, β2, . . . , βis be the vertices in Vs adjacent to s.

The following lemma, which relates the characteristic polynomial of A to the charac-
teristic polynomials of A({r, s}), A(r) and A(s), plays a key role. For a detailed proof of
the case A a zero-one matrix see [9, Proposition 5.1.1].

Lemma 2.8 Let A = [
ai j

]
be a real symmetric n ×n matrix whose graph is a tree T with

vertices r and s adjacent. Let λi ’s be the eigenvalues of A and τi ’s be the eigenvalues of
A({r, s}). Then, the characteristic polynomial of A is

cA(x) = −a2
rs cA[Vr \{r}]cA[Vs\{s}] + cA[Vr ] cA[Vs ] (3)

and ∏n
i=1(x − λi )∏n−2
i=1 (x − τi )

= −a2
rs + cA[Vr ]

cA[Vr \{r}]

cA[Vs ]

cA[Vs\{s}]
. (4)

Proof First observe that since T is a tree, each nonzero term in det(x I − A) containing
ars as a factor also contains asr as a factor. The first term of (3) represents the terms of the
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6 K.H. Monfared and B.L. Shader

Figure 1. A tree T with adjacent vertices r and s, where other neighbors of r are α1, . . . , αir and
other neighbors of s are β1, . . . , βis .

polynomial that contain ars as a factor and the second term represents the terms that do not.
Equation (4) is obtained by dividing both sides of (3) by cA({r,s}). �

When the λ–τ sequence of A is nondegenerate, the following shows that the cardinalities
of Vr and Vs are upper bounds on the number of τ -pairings of this sequence.

Lemma 2.9 Let A be an n × n real symmetric matrix with the property that its graph
is a tree T , vertices r and s are adjacent in T and the λ–τ sequence of (A, A({r, s})) is
nondegenerate. If there are exactly k τ -pairings in the λ–τ sequence of (A, A({r, s})), then
|Vr |, |Vs | > k.

Proof We claim that for each τ -pairing, one of the τ ’s is an eigenvalue of A [Vr \ {r}] and
the other one is an eigenvalue of A [Vs \ {s}]. Suppose to the contrary that both of the τ ’s
in the pairing λi+1 < τi < τi+1 < λi+2 belong to A [Vs \ {s}]. Then, τi and τi+1 are also
eigenvalues of A(s), which by first order Cauchy interlacing inequalities should interlace
the λ’s. That is, there is an eigenvalue λ of A, such that τi < λ < τi+1. This contradicts our
assumption that τi and τi+1 form a pairing. Hence, each of the subgraphs T [Vr \ {r}] and
T [Vs \ {s}] has one vertex for each τ -pairing and we conclude that |Vr |, |Vs | > k. �

Example 2.10 Let T be as in Figure 2 and A be a symmetric matrix with graph T . Then,
by Lemma 2.9 the λ–τ sequence of (A, A({1, 2})) is not of the form λ1 < λ2 < τ1 < τ2 <

λ3 < λ4, since |V1| = 1 and there is a τ -pairing.

The following lemma simply shows that for a rational function whose roots are all
simple, there is a sufficiently small vertical shift such that it does not change the number of
roots between any two poles and all the new roots are distinct from the old roots and the
poles of the original function.
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Linear and Multilinear Algebra 7

Figure 2. A star on four vertices.

Figure 3. An example of the function f defined by (5) and a suitable choice of small enough ε.

Lemma 2.11 Let

f (x) =
∏n

i=1
(x − λi )∏n−2

i=1
(x − τi )

, (5)

where λi ’s and τi ’s satisfy the strict second-order Cauchy interlacing inequalities and the
λ–τ sequence is nondegenerate. Then, for sufficiently small ε the function f (x) + ε has
exactly n distinct real roots, say μ1, μ2, . . . , μn, where μi �= τ j for all i and j (Figure 3).
Moreover, in the μ-τ sequence, the μ’s are exactly in the same position as λ’s in the λ–τ

sequence. That is, the τi ’s interlace the μi ’s in the same fashion that they interlace the λi ’s.

Proof Since the λ–τ sequence is nondegenerate, f (x) has exactly n roots λ1, λ2, . . .,
λn and all of them are simple roots. Furthermore, f (x) is a continuous and differentiable
function around its roots, so for each i = 1, 2, . . . , n there exist δi > 0 such that f ′(x) �= 0
on the interval [λi − δi , λi − δi ]. Let ε = 1

2 min{|( f (λi ± δi )| : i = 1, . . . , n}. �

Note that if f (x) does not have any negative local extreme values, then ε can be chosen
arbitrarily large. But, since there is at least one λ-pairing, it can be shown that there is at
least one negative local extreme value for the function f . Hence, the choice of ε will be
restricted to (0, m), where m is the maximum of these negative local extreme values.
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8 K.H. Monfared and B.L. Shader

3. The λ–τ structured inverse eigenvalue problem for trees

Recall that there is a ε > 0 such that τi ’s interlace the n real roots of f (x) + ε in the same
way that they interlace λi ’s. Below the (r, s) entry of A is chosen such that 0 ≤ ars ≤ √

ε.
Theorem 3.1 below shows that any such choice of ars is sufficient for solving the λ–τ

problem for trees, provided the necessary conditions are satisfied. In other words, assuming
nondegeneracy of the λ–τ sequence, the only constraints to solve a λ–τ structured inverse
eigenvalue problem where the given graph is a tree and the vertices to be deleted are
adjacent, are the second-order Cauchy interlacing inequalities (Proposition 2.1) and the
combinatorial restrictions (Lemma 2.9). Now we are ready to present and prove the main
theorem for trees.

Theorem 3.1 Let T be a tree with vertices 1, 2, . . . , n such that its vertices r and s are
adjacent and λ1, . . . , λn, τ1, . . . , τn−2 be real numbers satisfying

λi < τi < λi+2, (6)

and

τi �= λi+1, (7)

for all i = 1, . . . , n −2. Furthermore, assume that k τ -pairings occur and T [Vr \ {r}] and
T [Vs \ {s}] each have at least k vertices. Then, there is a symmetric matrix A = [

ai j
]

with
graph T and eigenvalues λ1, . . . , λn such that A({r, s}) has eigenvalues τ1, . . . , τn−2.

Proof Let T be a tree as in Figure 1 and f (x) be defined by (5). By Lemma 2.11 there
exists an ε > 0 such that g(x) = f (x) + ε has n distinct real zeros. Let ars = √

ε and μ1,
μ2, …, μn be the roots of g(x). For small enough ε > 0 the τ ’s interlace the μ’s in the same
way that τ ’s interlace λ’s. Let X be the set of these μ’s and τ ’s. Then, X is nondegenerate
with exactly k τ -pairings, |Vr | and |Vs | are positive integers such that |Vr | + |Vs | = n and
|Vr |, |Vs | > k. Thus, by Lemma 2.5 X can be partitioned into two sets X1, X2 such that X1
has |Vr | μ’s and |Vr | − 1 τ ’s and X2 set has |Vs | μ’s and |Vs | − 1 τ ’s. Furthermore, in each
set the τ ’s and the μ’s satisfy first order Cauchy interlacing inequalities.

By Lemma 2.1 of [6], there are real symmetric matrices A[Vr ] and A[Vs] such that graph
of A[Vr ] is T [Vr ] and graph of A[Vs] is T [Vs]. The set X1 consists of the eigenvalues of
A[Vr ] and A[Vr \ {r}] and the set X2 consists of the eigenvalues of A[Vs] and A[Vs \ {s}].

Now let A = (A[Vr ] ⊕ A[Vs])+ars (Ers + Esr ), where Ers +Esr represents the matrix
with 1’s in the positions corresponding to the edge {r, s} and zeros elsewhere. By Lemma
2.8, the eigenvalues of A are λi ’s and the eigenvalues of A({r, s}) are τi ’s.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
A[Vr ] O

ars

ars

O A[Vs]

⎤⎥⎥⎥⎥⎥⎥⎦ . �
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Linear and Multilinear Algebra 9

We note that if r = 1 and s = 2, then by reordering the rows and the columns as
(1, 2, α1, . . . , αi1 , β1, . . . , βi2), A has the form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Aα)11 a12 Aα[1, 1) 0 · · · 0
a12 (Aβ)11 0 · · · 0 Aβ [1, 1)

0

Aα(1, 1] ... Aα(1) O
0

0
... Aβ(1, 1] O Aβ(1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Aα = A[V1] and Aβ = A[V2].

Example 3.2 Suppose we want to find a real symmetric matrix A whose graph is the tree
T in Figure 4, such that its eigenvalues are −6,−5,−2,−1, 3, 4 and 6 and the eigenvalues
of A({3, 4}) are −4,−3, 1, 2 and 5. There are two τ -pairings and they interlace the three λ-
pairings. Note that |V3|, |V4| > 2. So, Theorem 3.1 guarantees the existence of such matrix
A. To construct this matrix, we choose a3 4 = 1 and find the roots μi of f (x) + 1 where f
is defined by (5). Partition the μ-τ sequence into two sequences similar to the partitioning
in Example 2.7. Following the algorithm given in the proof of Theorem 3.1, we find

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 2.292 0 0 0 0
0 1 2.856 0 0 0 0

2.292 2.856 −1.699 1 0 0 0
0 0 1 −0.3008 1.620 4.180 0
0 0 0 1.620 5 0 0
0 0 0 4.180 0 0.2033 2.399
0 0 0 0 0 2.399 −1.203

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 4. A tree T on 7 vertices with adjacent vertices 3 and 4.
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10 K.H. Monfared and B.L. Shader

Note that if we let a3,4 = 0.1, we get a different matrix

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 0 2.366 0 0 0 0
0 1 2.898 0 0 0 0

2.366 2.898 −1.997 0.1 0 0 0
0 0 0.1 −0.002686 1.581 4.183 0
0 0 0 1.581 5 0 0
0 0 0 4.183 0 0.2001 2.4
0 0 0 0 0 2.4 −1.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to check that the graph of A is T and the eigenvalues of A and A({3, 4}) are as
desired. Note that the approximations are because of machine error and also approximations
in finding the roots of the polynomials during the algorithm. Furthermore, note that we can
choose all the off-diagonal entries corresponding to an edge of the graph to be positive.

4. The λ–τ structured inverse eigenvalue problem for connected graphs

It is natural to ask if there is a result analogous to Theorem 3.1 for general connected graphs.
First, note that a connected graph which is not a tree has at least 3 vertices. So, for the rest of
this section we can safely assume that n ≥ 3. Here we use a similar approach to the one in
[6] using the Implicit Function Theorem, the Duarte property and a property similar to the
Strong-Arnold hypothesis to give an affirmative answer to this question. Let A be a matrix
whose graph is a tree T on n vertices 1, 2, . . . , n, with v and w adjacent. Let T (w) denote
the submatrix obtained from T by deleting the vertex w and Tv(w) denote the connected
component of T (w) which contains v. Also let A(w) and Av(w) denote the submatrices
of A corresponding to T (w) and Tv(w), respectively. Here, we quote the definition of the
Duarte property from [6]. For a precise definition of other concepts see [6].

Let A be a real symmetric matrix. If G(A) has just one vertex, then A has the Duarte-property
with respect to w. If G(A) has more than one vertex, then A has the Duarte-property with respect
to w provided the eigenvalues of A(w) strictly interlace those of A and for each neighbor v of
w, Av(w) has the Duarte-property with respect to the vertex v.

Note that by construction, the matrices A[Vr ] and A[Vs] in the Theorem 3.1 can be
taken to have the Duarte property with respect to vertices r and s, respectively. Let A =
A[Vr ] ⊕ A[Vs], x = (x1, x2, . . . , x2n−2) and y = (y1, y2, . . . , yp), where xi ’s and y j ’s are
real variables and p = n2−3n+4

2 .
Let M(x, y)be a matrix obtained from A by replacing diagonal entries by 2xi , 1 ≤ i ≤ n,

nonzero off-diagonal entries by xn+i , 1 ≤ i ≤ n − 2 and zero off-diagonal entries by y j ,
1 ≤ j ≤ p. Note that the entry corresponding to the edge {1, 2} is now replaced by
some y j . Also define N (x, y) := (M(x, y)) ({r, s}). We abbreviate M(x, y) and N (x, y)
by M and N , respectively. Let b = (b1, . . . , bp). For a function f (x, y) and a matrix
A = M(a1, . . . , a2n−1, b1, . . . , bp) we denote f (a1, . . . , a2n−1, b1, . . . , bp) by f (A, b).
Similarly, Jac( f ) |(A,b) denotes the Jacobian matrix of f where it is evaluated at (x, y) =
(a1, . . . , a2n−1, b1, . . . , bp).

Define g : R2n−2 × Rp → R2n−2 by

g(x, y) = (c0, c1, . . . , cn−1, d0, d1, . . . , dn−3) ,
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Linear and Multilinear Algebra 11

where the ci ’s and di ’s are the nonleading coefficients of the characteristic polynomials
of M and N , respectively. We want to show that if g(A, 0) = (c, d) ∈ R2n−2 for some
‘generic’ (A, 0) ∈ R2n−2 × Rp, then for any sufficiently small perturbations ε ∈ Rp there
is an adjustment of A ∈ R2n−2, namely Â, such that g( Â, ε) = (c, d). In other words,
if the coefficients of the characteristic polynomials of A and A({r, s}) are given by c and
d, respectively, then any superpattern of A has a realization with the same characteristic
polynomial.

It is hard to work with partial derivatives of g. Using Newton’s identities, we introduce a
function f such that there exist a differentiable, invertible function h with f ◦ h = g. Thus,
similar to g, if f (h(A, 0)) = (a, b), then there is a matrix Â such that f (h( Â, ε)) = (a, b).

Define the function f : R2n−2 × Rp → R2n−2 by

f (x, y) =
(

trM

2
,

trM2

4
, . . . ,

trMn

2n
,

trN

2
,

trN 2

4
, . . . ,

trN n−2

2(n − 2)

)
. (8)

Let Jacx ( f ) be the matrix obtained from the Jacobian of f by deleting the columns
corresponding to derivatives of f with respect to yi ’s. We will show that Jacx ( f ) evaluated
at (A, 0) is nonsingular. The same calculations as in Lemma 3.1 of [6] yield the following:

Lemma 4.1 Let M and N be as above and (i, j) be a nonzero position of M with
corresponding variable xt . Then,

(a)
∂

∂xt

(
trMk

)
= 2k Mk−1

i j and

(b)
∂

∂xt

(
trN k

)
=

{
2k N k−1

i j if neither i nor j is 1 or 2
0 otherwise.

Notation

• For simplicity from now on let r = 1 and s = 2. Furthermore, assume that 1 is the first
vertex of V1 and 2 is the first vertex of V2. Then for example, A[V2 \{2}] = A[V2](1)

• C̃ is a matrix obtained from a matrix C by appending two zero rows on top of it and
then two zero columns to left of the new matrix. That is,

C̃ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... C
0 0

⎤⎥⎥⎥⎥⎥⎦ .

• A ‘∗’ as an entry of a matrix means a real number whose value is not known.
• for two matrices A and B of the same size, A ◦ B denotes the entry-wise product of A

and B, also known as the Schur product, or Hadamard product. That is, (A ◦ B)i j =
Ai j Bi j .

• For two n × n matrices A and B, [A, B] := AB − B A is the commutator of A and
B.

Using Lemma 4.1 we can see the following.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

yo
m

in
g 

L
ib

ra
ri

es
] 

at
 0

8:
45

 0
3 

Fe
br

ua
ry

 2
01

5 



12 K.H. Monfared and B.L. Shader

Corollary 4.2 Let f and A be defined as above. Then,

Jacx ( f )
(A,0)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ii1 j1 · · · Iin−1 jn−1 I11 · · · Inn

Ai1 j1 · · · Ain−1 jn−1 A11 · · · Ann
...

. . .
...

...
. . .

...

An−1
i1 j1

· · · An−1
in−1 jn−1

An−1
11 · · · An−1

nn

Ĩi1 j1 · · · Ĩin−1 jn−1 Ĩ11 · · · Ĩnn

B̃i1 j1 · · · B̃in−1 jn−1 B̃11 · · · B̃nn
...

. . .
...

...
. . .

...

B̃n−3
i1 j1

· · · B̃n−3
in−1 jn−1

B̃n−3
11 · · · B̃n−3

nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this is a (2n − 2) × (2n − 2) matrix and in order to be nonsingular it suffices
to show that it has full row rank.

For convenience, we mention Lemmas 1.1 and 2.2 of [6] here.

Lemma 4.3 Let A be an m × m matrix, B be an n × n matrix and X be an m × n matrix
such that AX = X B. Then the following hold:

(a) If A and B do not have a common eigenvalue, then X = O.
(b) If X �= O and A and B share exactly one common eigenvalue, then each nonzero

column of X is a generalized eigenvector of A corresponding to the common
eigenvalue.

Lemma 4.4 Let A have the Duarte-property with respect to the vertex w, G(A) be a tree
T and X be a symmetric matrix such that

(a) I ◦ X = O,
(b) A ◦ X = O,
(c) [A, X ](w) = O.

Then X = O.

The following theorem shows that the matrix A = A[Vr ] ⊕ A[Vs] constructed in the
proof of Theorem 3.1 is a ‘generic’ matrix. That is, the Jacobian of the function f defined
by (8) evaluated at A is nonsingular.

Theorem 4.5 Let T be a tree on n vertices {1, 2, . . . , n}, where e = {r, s} is an edge of
T . Let A be a real symmetric matrix whose graph is T \ e, the function f be defined by (8)
and B = A({r, s}). If A[Vr ] has the Duarte-property with respect to vertex r and A[Vs] has

the Duarte-property with respect to vertex s, then Jacx ( f )
(A,0)

is nonsingular.
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Linear and Multilinear Algebra 13

Proof Let α = (α1, . . . , α2n−2) and assume that αT Jacx ( f )
(A,0)

= O , that is,

2n−2∑
i=1

αi Jac( f )k = O, (9)

where Jac( f )k denotes the kth row of Jacx ( f )
(A,0)

. We want to show that α = 0.

Let X = α1 I + α2 A + · · · + αn An−1 + αn+1 Ĩ + αn+2 B̃1 + · · · + α2n−2 B̃n−3. Note

that each column of Jacx ( f )
(A,0)

is evaluated only at a diagonal or a nonzero off-diagonal

position of A. Thus αT Jacx ( f )
(A,0)

= O if and only if

• all diagonal entries of X are zero and
• wherever A has a nonzero entry, X has a zero entry.

That is, X ◦ A = O and X ◦ I = O .
We first show that X = O . Let

p(x) =
n∑

i=1

αi x i−1, and q(x) =
2n−1∑
j=n+1

α j x j−(n+1).

Then X = p(A) + q̃(B) and Jacx ( f )
(A,0)

has full row rank if p(x) and q(x) are both zero

polynomials. Since [A, p(A)] = O , [A, X ] = [A, q̃(B)]. Also since A({r, s}) = B,
[A, q̃(B)]({r, s}) = O . Hence, [A, X ]({r, s}) = O .

Reorder rows and columns of A so that

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C x

xT ∗
O

O
∗ yT

y D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where x and y correspond to vertices r and s, respectively. Then
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14 K.H. Monfared and B.L. Shader

q̃(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

q(C)
...

0
0 · · · 0 0

O

O

0 0 · · · 0
0
... q(D)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By direct calculations we have

[A, q̃(B)] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
O

...

∗
∗ · · · ∗ 0

O

O

0 ∗ · · · ∗
∗
... O
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Recall that, the (1, 1) block of the above 2×2 block matrix corresponds to the indices in
Vr and its (2, 2) block corresponds to the indices in Vs . It follows that [A [Vr ] , X [Vr ]](r) =
O and [A [Vs] , X [Vs]](s) = O . Recall that the graphs of A[V1] and A[V2] are trees and
these matrices are chosen to have the Duarte property with respect to the vertices 1 and 2,
respectively. Thus, by Lemma 4.4 X [Vr ] = O and X [Vs] = O . So far, it is shown that X
has the following form:

X =

⎡⎢⎢⎢⎢⎢⎢⎣
O X1

X2 O

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the blocks are conformally partitioned as A. But X is a polynomial in A and B̂, hence
X1 and X2 are also zero, hence, X = O . Thus, p(A) = −q̃(B). Let Y = p(A) = −q̃(B).
Note that,

AY = Ap(A) = −Aq̃(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Cq(C)
...

0
∗ · · · ∗ 0

O

O

0 ∗ · · · ∗
0
... Dq(D)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Linear and Multilinear Algebra 15

and

Y A = p(A)A = −q̃(B)A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
q(C)C

...

∗
0 · · · 0 0

O

O

0 0 · · · 0
∗
... q(D)D
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since Ap(A) = p(A)A, the stars are all zero. That is, AY = Y B̃. Hence, by part (a) of
Lemma 4.3 either Y = O , or A and B̃ have a common eigenvalue. If Y = O we are done.
Otherwise, since A and B have no common eigenvalue, A and B̃ both have an eigenvalue
0 and the multiplicity of it in A is 1. Suppose Y j is a nonzero column of Y . Then, by part
(b) of Lemma 4.3, Y j is a generalized eigenvector of A corresponding to 0. But A has
distinct eigenvalues, hence Y j is an eigenvector of A corresponding to 0. Note that since
Y = −q̃(B), Y j = [∗ · · · ∗ 0 |0 ∗ · · · ∗ ]T , where the blocks are the same size as C and
D. The form of A and Y j imply that the vector Y j ({r, s}) is a nonzero eigenvector of B
corresponding to 0. This leads to a contradiction that A and B have a common eigenvalue.
Thus Y = O .

Since Y = O , p(A) = O and q(B) = O . Note that p(x) is a polynomial of degree at
most n − 1. Since A has n distinct eigenvalues, its minimal polynomial has degree n. Thus,
p(x) is the zero polynomial. Similarly, q(x) is the zero polynomial. So Jacx ( f ) |(A,0) is
nonsingular. �

Now we are ready to prove an analogue to Theorem 3.1 for connected graphs.
We state below a version of the Implicit Function Theorem for convenience, to prove

our main result (see [10]).

Theorem 4.6 (Implicit Function Theorem) Let F : Rs+r → Rs be a continuously
differentiable function on an open subset U of Rs+r defined by

F(x, y) = (F1(x, y), F2(x, y), . . . , Fs(x, y)),

where x = (x1, . . . , xs) ∈ Rs and y ∈ Rr . Let (a, b) be an element of U with a ∈ Rs and
b ∈ Rr , and c be an element of Rs such that F(a, b) = c. If[

∂ Fi

∂x j (a,b)

]
is nonsingular, then there exist an open neighborhood V containing a and an open neigh-
borhood W containing b such that V × W ⊆ U and for each y ∈ W there is an x ∈ V
with F(x, y) = c.

Theorem 4.7 Let G be a connected graph on n vertices 1, 2, . . . , n with vertices 1 and
2 adjacent in G. Furthermore, assume that G has a spanning tree T containing the edge
{1, 2} and a partition V1 ∪ V2 of its vertices with |V1|, |V2| > k such that Vi contains vertex
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16 K.H. Monfared and B.L. Shader

i for i = 1, 2. Let λ1, . . . , λn, τ1, . . . , τn−2 be real numbers satisfying

λi < τi < λi+2, (10)

τi �= λi+1, (11)

for all i = 1 . . . , n − 2. If k τ -pairings occur in the given λ–τ sequence, then there is
a real symmetric matrix A = [

ai j
]

with graph G and eigenvalues λ1, . . . , λn such that
eigenvalues of A({1, 2}) are τ1, . . . , τn−2.

Proof Consider the spanning tree T of G. Theorem 3.1 implies that there exists an
A = (A[V1] ⊕ A[V2]) + a12(E12 + E21) ∈ S(T ) such that A has eigenvalues λ1, . . . , λn ,
A({1, 2}) has eigenvalues τ1, . . . , τn−2 and A[V1], A[V2] have the Duarte-property with
respect to vertex 1 and 2, respectively. By Theorem 4.5, the Jacobian matrix of the function
f evaluated at A is nonsingular.

Let c and d be the vectors of nonleading coefficients of the characteristic polynomials
of A and A({1, 2}), respectively.

Letting a = (a1, . . . , an, an+1, a2n−2) be the assignment of the x j ’s corresponding to A
we see that g(a, 0, 0, . . . , 0) = (c, d). Since an+1, . . . , a2n−2 are nonzero, there is an open
neighborhood U of (a, 0, . . . , 0) each of whose elements has no zeros in the same n − 2
positions. By the Implicit Function Theorem 4.6, there is an open neighborhood V of a and
an open neighborhood W of 0 such that V × W ⊆ U and for each y ∈ W there is an x ∈ V
such that F(x, y) = (c, d). Take y to be a vector in W with no zero entries corresponding
to the edges of G. Then the (x, y) satisfying F(x, y) = (c, d) corresponds to a matrix
Â ∈ S(G) such that the λ’s are the eigenvalues of Â and the τ ’s are the eigenvalues of
Â({1, 2}). �

Remark 4.8 Note that in the proof of Theorem 4.5, no conditions on the choice of ars

are placed. For example, ars can be zero. Similarly, it could remain zero in the proof of
Theorem 4.7. Hence, to prove Theorem 3.1, one could prove it for the forest obtained by
deleting the edge {1, 2}, that is, by letting a12 = 0 in A. Then use Theorem 4.7 to extend it
to the original tree, that is, a superpattern of the obtained forest.

5. The case when the two removed vertices are not adjacent

In this section, assume T is a tree on vertices 1, 2, . . . , n, where the vertices 1 and 2 are not
adjacent (Figure 5). Let

α =
{
v

∣∣∣ the path from v to 1 does not contain
2 and the path from v to 2 contains 1.

}
β =

{
v

∣∣∣ the path from v to 2 does not contain
1 and the path from v to 1 contains 2.

}
γ =

{
v

∣∣∣ the path from v to 2 does not contain 1 and the
path from v to 1 doesn not contain 2.

}
First note that in this case a variation of Lemma 2.9 holds.

Lemma 5.1 Let A be an n ×n real symmetric matrix whose graph is a tree T , as above. If
there are exactly k τ -pairings in the eigenvalues of A and A({1, 2}), then |α|, |β| > k −|γ |.
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Linear and Multilinear Algebra 17

Figure 5. A tree T with nonadjacent vertices r and s.

Proof The proof is similar to that of Lemma 2.9. That is, both of the τ ’s in a τ -pairing
cannot both be eigenvalues of either T [α \{1}] or T [β \{2}]. Thus, each τ is and eigenvalue
of T [α \ {1}], T [γ ] or T [β \ {2}]. In other words, for each τ -pairing λi+1τi < τi+1 < λi+1,
if neither τi nor τi+1 belongs to T [β \ {2}], then it belongs to T [γ ] or T [α \ {1}]. Hence,
|α| − 1 + |γ | ≥ k and similarly |β| − 1 + |γ | ≥ k. �

In order to solve a λ–τ problem for a tree where the deleted vertices are not adjacent,
we break T into two trees by deleting an edge in γ and solve two λ–μ problems similar to
the ones of the Theorem 3.1. Then we show that this solution is generic in the same sense
as in Theorem 4.5. Finally, we want to insert the deleted edge back to the tree and use the
implicit function theorem to show that there is a solution. If one cannot divide γ into two
parts γ1, γ2 such that T [α ∪ γ1] and T [β ∪ γ2] are connected and each has at least k + 1
vertices, then our method does not work. Hence, we assume that such a partition of γ exists:

Assumption 5.2 There exist γ1, γ2 ⊆ γ such that γ1 ∪ γ2 = γ , γ1 ∩ γ2 = ∅ and T [α ∪ γ1]
and T [β ∪ γ2] are connected and each has at least k + 1 vertices.

Theorem 5.3 Let T be a tree on n vertices 1, 2, . . . , n such that r and s are not adjacent
and λ1, . . . , λn, τ1, . . . , τn−2 real numbers satisfying

λi < τi < λi+2 (12)

τi �= λi+1, (13)

for all i = 1 . . . , n−2. Furthermore, assume that there are k τ -pairings and Assumption 5.2
holds. Then there is a symmetric matrix A = [

ai j
]

with graph T and eigenvalues λ1, . . . , λn

such that A({r, s}) has eigenvalues τ1, . . . , τn−2.
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18 K.H. Monfared and B.L. Shader

Proof As T is a tree, there exists an edge {u, v} on the path from r to s that divides γ

into the two sets γr and γs . Partition the λ–τ sequence of (A, A({r, s})) into two sets Xr

and Xs as in Lemma 2.5. By Theorem 3.1 there are matrices A[α ∪ γr ], A[β ∪ γs] such
that Xr consists of the eigenvalues of A[α ∪ γr ] and A[α \ {r} ∪ γr ] and Xs consists of the
eigenvalues of A[β ∪ γs] and A[β \ {s} ∪ γs]. Furthermore, G(A[α ∪ γr ]) = T [α ∪ γr ] and
G(A[β ∪ γs]) = T [β ∪ γs]. Note that A[α ∪ γr ] can be taken to have the Duarte property
with respect to vertex r and A[β ∪γs] can be taken to have the Duarte property with respect
to vertex s.

Note that ars = 0. Let

A =

u v⎡⎢⎢⎢⎢⎢⎢⎣
A[α ∪ γ1]

0
0

A[β ∪ γ2]

⎤⎥⎥⎥⎥⎥⎥⎦
u
v

Let G(A, 0) = (c, d), where 0 comes from the (u, v) entry of A. By Theorem 4.5,
the Jacobian of the function f defined in (8) evaluated at A is non-singular. Hence, for
sufficiently small ε > 0, there is Â close to A such that G( Â, ε) = (c, d). That is, perturbing
the (u, v) entry of A to be nonzero, the rest of the nonzero entries of A can be adjusted
so that A and A({r, s}) have the same characteristic polynomial as before, thus the same
eigenvalues as before. �

Example 5.4 Suppose that we want to find a real symmetric matrix A whose graph is the
tree T in Figure 6, such that its eigenvalues are 1, 2, 4, 6, 9, 10 and 12 and the eigenvalues
of A({3, 6}) are 3, 5, 7, 8 and 11. Note that there is one τ -pairing. In this method, we need
to delete an edge on the path from 3 to 6 and add the edge {3, 6} and solve the problem

Figure 6. Tree T on 7 vertices where vertices 3 and 6 are not adjacent.
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Linear and Multilinear Algebra 19

for this tree, but we let a3,6 = 0. So we have two choices: case I: edge {3, 4} and case II:
edge {4, 6}. In either cases |V3|, |V6| > 1. So, Theorem 5.3 guarantees the existence of such
matrix A.

Case 1 (r, s) = (3, 4).
Let T ′ be the tree obtained from T by deleting the edge {3, 4} and inserting the edge {3, 6}.

Solve the problem for T ′ with 0 on (3, 6) entry of A. Then, use the Jacobian method to
perturb a3,4 to ε = 0.1 and adjust other entries to get the following matrix:

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 1.732 0 0 0 0
0 7 3 0 0 0 0

1.732 3 4.003 0.1 0 0 0
0 0 0.1 6.939 1.434 4.062 0
0 0 0 1.434 6.061 0 0
0 0 0 4.062 0 5.997 1.581
0 0 0 0 0 1.581 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Case 2 (r, s) = (4, 6).
Let T ′ be the tree obtained from T by deleting the edge {4, 6} and inserting the edge {3, 6}.

Solve the problem for T ′ with 0 on the (3, 6) entry of A. Then use the Jacobian method
to perturb a4,6 to ε = 0.1 and adjust other entries to get the following matrix:

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 0 2.372 0 0 0 0
0 11 1.909 0 0 0 0

2.372 1.909 6.004 3.119 0 0 0
0 0 3.119 3.960 0.999 0.1 0
0 0 0 0.999 4.040 0 0
0 0 0 0.1 0 3.996 3.464
0 0 0 0 0 3.464 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to check that in both cases the graph of A is T and the eigenvalues of A
and A({3, 4}) are as desired. Note that the approximations are because of machine error,
approximations in finding the roots of the polynomials during the algorithm and also the
error in the Newton’s method we used to find the roots of the systems of multivariable
polynomial equations. Newton’s method uses 10 iterations to find above matrices.

Finally, we state an analogue of Theorem 4.7 for the case of connected graphs.

Theorem 5.5 Let G be a connected graph on n vertices 1, 2, . . . , n where r and s are
not adjacent and let λ1, . . . , λn, τ1, . . . , τn−2 be real numbers satisfying

λi < τi < λi+2, (14)

τi �= λi+1, (15)

for all i = 1 . . . , n − 2. Furthermore, assume that k τ -pairings occur. If G has a spanning
tree T such that |α|, |β| ≥ k − |γ |, then there is a real symmetric matrix A = [

ai j
]

with
graph G and eigenvalues λ1, . . . , λn such that eigenvalues of A({r, s}) are τ1, . . . , τn−2.
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20 K.H. Monfared and B.L. Shader

Proof Let T be a spanning tree of G such that |α|, |β| ≥ k −|γ |. By Theorem 5.3, there is
a matrix A with desired spectrum and subspectrum whose graph is T . The rest of the proof
exactly follows as that of Theorem 4.7. �

6. Diagonal perturbations

Deleting the i-th row and column of a matrix is closely related to perturbing the i-th diagonal
entry of the matrix. In this section, the same ideas and techniques of the previous sections
are used to study the spectra of a matrix and a diagonal perturbation of the matrix. We begin
by studying the case that one diagonal entry is perturbed.

Lemma 6.1 Let

g(x) = (x − c1)(x − c2) · · · (x − cn),

h(x) = (x − d1)(x − d2) · · · (x − dn),

and

f (x) = g(x) − h(x),

where d1 < c1 < d2 < c2 < · · · < dn < cn. Then, f has exactly n − 1 real roots
e1, . . . , en−1 and they satisfy the inequalities d1 < e1 < d2 < · · · < en−1 < dn.

Proof First note that the degree of f is n − 1, since the coefficient of xn−1 in f is the
positive quantity

∑n
i=1 ci − di > 0. Next, note that g(di ) and g(di+1) have opposite signs

for all i = 1, . . . , n − 1. Consequently, f (di ) and f (di+1) have opposite signs for all
i = 1, . . . , n − 1. Hence, f has a zero between di and di+1 for all i = 1, . . . , n − 1. That
is, f has n − 1 roots ei such that d1 < e1 < d2 < · · · < dn−1 < en−1 < dn . �

Lemma 6.2 Let A be a matrix and let Â = A + aEii where Eii is the matrix of the same
size as A with its (i, i) entry equal to 1 and all other entries equal to zero. Then,

c
Â
(x) = cA(x) + acA(i) (x).

Proof This follows from the expansion of det(x I − Â) along the i-th row. �

The above lemma shows that the eigenvalues of A(i) are roots of c
Â
(x) − cA(x) and

this latter polynomial is determined by the eigenvalues of Â and A. Thus, a solution to the
λ–μ structured inverse eigenvalue problem defined by the eigenvalues of A and A(i), is
also a solution to the following related diagonal perturbation problem.

Theorem 6.3 Let

λ1 < μ1 < λ2 < μ2 < · · · < λn < μn

be 2n real numbers and i an integer with 1 ≤ i ≤ n. Given a tree T , there is an n × n
real symmetric matrix A such that the graph of A is T , A has eigenvalues λ1, . . . , λn and
A + aEii has eigenvalues μ1, . . . , μn, where a = ∑n

j=1(μ j − λ j ) > 0.
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Linear and Multilinear Algebra 21

Proof Let

f (x) := (
(x − μ1)(x − μ2) · · · (x − μn)

) − (
(x − λ1)(x − λ2) · · · (x − λn)

)
.

By Lemma 6.1, f (x) has exactly n − 1 real roots γ1 < · · · < γn−1 which strictly interlace
λi ’s. That is,

λ1 < γ1 < λ2 < γ2 < · · · < γn−1 < λn .

So

f (x) =
⎛⎝ n∑

j=1

(μ j − λ j )

⎞⎠ n−1∏
i=1

(x − γi ) = a
n−1∏
i=1

(x − γi ). (16)

By Theorem 4.2 of [6], there is a real symmetric matrix A with the Duarte property with
respect to vertex i whose graph is T , with eigenvalues λ1, . . . , λn such that the eigenvalues
of A(i) are γ1, . . . , γn−1. Let Â = A + aEii . By (16), we have

cÂ(x) = cA(x) + a cA(i)(x)

= (x − λ1)(x − λ2) · · · (x − λn) + a(x − γ1)(x − γ2) · · · (x − γn)

= (x − μ1)(x − μ2) · · · (x − μn),

that is, eigenvalues of A + aEii are μ1, . . . , μn . �

It is natural to ask if the above matrix A is ‘generic’since the matrix obtained in Theorem
4.2 of [6] is. Below, we answer this question in affirmative. We begin with the following
technical lemma.

Lemma 6.4 Let A be a real symmetric matrix whose graph is a tree T on vertices
1, 2, . . . , n and let a be a real positive number. Assume that A has the Duarte property
with respect to vertex 1. Let x = (x1, x2, . . . , x2n−1, y) and let M(x) be defined as in
Section 4, except for the (1, 1)-entry which is x1. Also, let M̂(x) = M(x) + yE11. Denote
these matrices by M and M̂ for short. Define the function f : R2n → R2n by

f (x) = (c0, c1, . . . , cn−1, d0, d1, . . . , dn−1),

where ci and di are the nonleading coefficients of the characteristic polynomials of M and
M̂, respectively. Then, Jacobian of f evaluated at (A, 0) is nonsingular.

Proof Let g : R2n → R2n be defined by

g(x) = (c0, c1, . . . , cn−1, e0, e1, . . . , en−2),

where the ci are the nonleading coefficients of the characteristic polynomials of M and the
ei are the nonleading coefficients of the characteristic polynomial of N (x) = M(x) (1) (or
N for short). As it is shown by Theorems 3.3 and 4.2 of [6], the Jacobian of g evaluated at
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22 K.H. Monfared and B.L. Shader

A is nonsingular. Let

Jac(g)
A

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
Pn×(2n−1)

Q (n−1)×(2n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the rows of P denote the derivatives of the ci ’s evaluated at A and the rows of Q
denote the derivatives of the ei ’s evaluated at A.

Observe that cM̂ (x) = cM (x) − ycM(1)(x). Thus,

Jac( f )
(A,a)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

P ...

0
e0

P( ; n) − aQ ...

en−2

Pn 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where Pn is the last row of P and the ei ’s are evaluated at (A, a). In the matrix in (17),
subtract each row of P from the corresponding rows in the second and third block rows
and then scale the rows of the second block row by 1

a . Now the last row is
[

0 · · · 0 | 1
]
.

Subtract appropriate multiples of the last row from each row in the second block row to
make all the entries of the last column of that block zero. The resulting matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

P ...

0
0

Q ...

0
0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is row equivalent to Jac( f )
(A,a)

is nonsingular, since
[

P
Q

]
is. �

The proof of the following theorem is similar to the proof of Theorem 4.2 of [6].

Theorem 6.5 Let
λ1 < μ1 < λ2 < μ2 < · · · < λn < μn

be 2n real numbers and i be an integer with 1 ≤ i ≤ n. Given a connected graph G, there
is an n × n real symmetric matrix A such that the graph of A is G, A has eigenvalues
λ1, . . . , λn and A + aEii has eigenvalues μ1, . . . , μn, where a = ∑n

j=1(μ j − λ j ) > 0.
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Linear and Multilinear Algebra 23

Proof (Sketch of the proof) Since G is a connected graph, it has a spanning tree T .
By Theorem 6.3 there is an n × n real symmetric matrix A with Duarte property with
respect to vertex i such that the graph of A is T , A has eigenvalues λ1, . . . , λn and A +
aEii has eigenvalues μ1, . . . , μn . By Lemma 6.4, the Jacobian of f evaluated at (A, 0)

is nonsingular. Hence, by Theorem 4.6, for sufficiently small perturbation ε of the zero
entries of A corresponding to edges in G \ T there are adjustments of the diagonal and
nonzero off-diagonal entries of A to yield Â such that f ( Â, ε) = f (A, 0). That is, if none
of the entries of ε are zero and they are sufficiently small. Then the graph of Â = G, A has
eigenvalues λ1, . . . , λn and A + aEii has eigenvalues μ1, . . . , μn . �

Now we are ready to study perturbations involving two diagonal entries. Note that one
cannot simply perturb one diagonal entry and then perturb another diagonal entry using the
above method twice, since the matrix A given by Theorem 6.3 varies for each perturbation.

Theorem 6.6 Let λ1, . . . , λn and τ1, . . . , τn be real numbers such that

λi < τi < λi+2, (18)

τi �= λi+1, (19)

for all i = 1 . . . , n − 2 and

λn−1 < τn−1, λn < τn . (20)

Assume a graph G satisfies the conditions of Theorems 4.7 or 5.5. Then, there is a real
symmetric matrix A and real numbers a1 and a2 such that the graph of A is G, the eigenvalues
of A are the λi ’s and the eigenvalues of A + a1 E11 + a2 E22 are the τi ’s.

Proof Let T ′ be a spanning tree of G and T be the forest obtained from T by deleting the
edge {u, v}which satisfies the condition in the proof of Theorem 5.3. Note that in the case that
1 and 2 are adjacent in T , then {u, v} = {1, 2}. Call the two obtained connected components
T1 and T2, where Ti contains vertex i . By Lemma 2.5 the set of all λ’s and the smallest n −2
τ ’s can be partitioned into two sets of sizes at least 2|T1|− 1 and 2|T2|− 1 such that in each
set the τ ’s interlace the λ’s. There are two τ ’s left, which are the largest τ ’s. Assign each of
them to one of the sets. By Theorem 6.3, each of these sets can be realized as eigenvalues of
a matrix Ai and Ai + ai E11 with graph Ti where Ai has the Duarte property with respect to
vertex i for i = 1, 2. Let A = A1 ⊕ A2 and Â = A + a1 E11 + a2 E22. Let M be the matrix
obtained from replacing each diagonal entry of A by 2x j , 1 ≤ j ≤ n and by replacing each
nonzero off-diagonal entry by xn+ j , 1 ≤ j ≤ n − 2. Let N := M + yE11 + zE22.

Define f : R2n → R2n with

f (x1, x2, . . . , x2n−2, y, z) = (c0, c1, . . . , cn−1, d0, d1, . . . , dn−1) ,

where ci and di are the nonleading coefficients of M and N , respectively. Define g : R2n →
R2n with

g(x1, x2, . . . , x2n−2, y, z) =
(

trM

2
,

trM2

4
, . . . ,

trMn

2n
,

trN

2
,

trN 2

4
, . . . ,

trN n

2n

)
.
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24 K.H. Monfared and B.L. Shader

Newton’s identities imply that Jac( f )
(A,a1,a2)

is nonsingular if and only Jac(g)
(A,a1,a2)

is

nonsingular. Note that the Jacobian of g evaluated at (A, a1, a2) is:

Jac(g)
(A,a1,a2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ii1 j1 · · · Iin−1 jn−1 I11 · · · Inn

Ai1 j1 · · · Ain−1 jn−1 A11 · · · Ann
...

. . .
...

...
. . .

...

An−1
i1 j1

· · · An−1
in−1 jn−1

An−1
11 · · · An−1

nn

Îi1 j1 · · · Îin−1 jn−1 Î11 · · · Înn

Âi1 j1 · · · Âin−1 jn−1 Â11 · · · Ânn
...

. . .
...

...
. . .

...

Ân−1
i1 j1

· · · Ân−1
in−1 jn−1

Ân−1
11 · · · Ân−1

nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reordering the rows and the columns of the above matrix we can write it as
[

Jacα | Jacβ

]
,

where

Jacα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I [α]11 · · · I [α]kk I [α]i1 j1 · · · I [α]ik−1 jk−1 0
...

. . .
...

...
. . .

...
...

A[α]k−1
11 · · · A[α]k−1

kk A[α]k−1
i1 j1

· · · A[α]k−1
ik−1 jk−1

0

A[α]k
11 · · · A[α]k

kk A[α]k
i1 j1

· · · A[α]k
ik−1 jk−1

0
...

. . .
...

...
. . .

...
...

A[α]n−1
11 · · · A[α]n−1

kk A[α]n−1
i1 j1

· · · A[α]n−1
ik−1 jk−1

0

I [α]11 · · · I [α]kk I [α]i1 j1 · · · I [α]ik−1 jk−1 ∗
...

. . .
...

...
. . .

...
...

Â[α]k−1
11 · · · Â[α]k−1

kk Â[α]k−1
i1 j1

· · · Â[α]k−1
ik−1 jk−1

∗

Â[α]k
11 · · · Â[α]k

kk Â[α]k
i1 j1

· · · Â[α]k
ik−1 jk−1

∗
...

. . .
...

...
. . .

...
...

Â[α]n−1
11 · · · Â[α]n−1

kk Â[α]n−1
i1 j1

· · · Â[α]n−1
ik−1 jk−1

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Linear and Multilinear Algebra 25

and

Jacβ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I [β]kk · · · I [β]nn I [β]ik jk · · · I [β]in−1 jn−1 0
...

. . .
...

...
. . .

...
...

A[β]k−1
kk · · · A[β]k−1

nn A[β]k−1
ik jk

· · · A[β]k−1
in−1 jn−1

0

A[β]k
kk · · · A[β]k

nn A[β]k
ik jk

· · · A[β]k
in−1 jn−1

0
...

. . .
...

...
. . .

...
...

A[β]n−1
kk · · · A[β]n−1

nn A[β]n−1
ik jk

· · · A[β]n−1
in−1 jn−1

0

I [β]kk · · · I [β]nn I [β]ik jk · · · I [β]in−1 jn−1 ∗
...

. . .
...

...
. . .

...
...

Â[β]k−1
kk · · · Â[β]k−1

nn Â[β]k−1
ik jk

· · · Â[β]k−1
in−1 jn−1

∗

Â[β]k
kk · · · Â[β]k

nn Â[β]k
ik jk

· · · Â[β]k
in−1 jn−1

∗
...

. . .
...

...
. . .

...
...

Â[β]n−1
kk · · · Â[β]n−1

nn Â[β]n−1
ik jk

· · · Â[β]n−1
in−1 jn−1

∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Â := A + a1 E11 + a2 E22. In Jacα , the first two block columns represent derivatives
with respect to variables in A1, while the third block column (the last column) represents
derivatives with respect to y and in Jacβ the first two block columns represent derivatives
with respect to variables in A2 and the third block column (the last column) represents
derivatives with respect to z. Furthermore, the first two block rows represent derivatives of
trMi and the last two block rows represent the derivatives of trN i .

Now suppose
rT Jac(g) |(A,a1,a2) = 0T , (21)

for some vector rT = (sT , tT ), where sT = (s1, . . . , sn) and tT = (t1, . . . , tn). Let s(x) =∑n
i=1 si xi and t (x) = ∑n

i=1 ti xi . Then, (21) holds if and only if (s(A) + t ( Â)) ◦ A = O
and (s(A) + t ( Â)) ◦ I = O , which is equivalent to having

(s(A1) + t ( Â1)) ◦ A1 = O, (s(A1) + t ( Â1)) ◦ I = O, (22)

and (s(A2) + t ( Â2)) ◦ A2 = O, (s(A2) + t ( Â2)) ◦ I = O, (23)

where I denotes the identity matrix of appropriate size in each case. Let CAi (x) denote
the characterisitc polynomial of Ai for i = 1, 2. Note that by Cayley–Hamilton theorem
[8] CAi (Ai ) = O . For i = 1, 2 let si (x) denote the remainder of division of s(x) by
the characteristic polynomial of Ai and ti denote the remainder of division of t (x) by the
characteristic polynomial of Âi . Then, (22) and (23) hold if and only if

(s1(A1) + t1( Â1)) ◦ A1 = O, (s1(A1) + t1( Â1)) ◦ I = O, (24)

and (s2(A2) + t2( Â2)) ◦ A2 = O, (s2(A2) + t2( Â2)) ◦ I = O. (25)
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By Theorem 3.3 of [6], we have si (x) = 0 and ti (x) = 0 for i = 1, 2. So, the
characteristic polynomials of A1 and A2 divide s(x) and the characteristic polynomials
of Â1 and Â2 divide t (x). But, since cA1(x) and cA2(x) are relatively prime, cA1(x)cA2(x)

divides s(x). On the other hand, deg(cA1(x)cA2(x)) = n and deg(s(x)) = n − 1. Hence
s(x) = 0. Similarly, t (x) = 0 and consequently r(x) = 0. This proves that the rows of
the Jac(g) evaluated at (A, a1, a2) are linearly independent and thus Jac( f ) evaluated at
(A, a1, a2) is nonsingular.

Similar to the proof of Theorem 4.7, let a be the assignment of the x j ’s correspond-
ing to A, then g(a, a1, a2, 0, 0, . . . , 0) = (c, d). There is an open neighborhood U of
(a, a1, a2, 0, . . . , 0) each of whose elements has no zeros in the same 2n + 1 entries. By
the Implicit Function Theorem 4.6, there is an open neighborhood V of a and an open
neighborhood W of 0 such that V × W ⊆ U and for each y ∈ W there is an x ∈ V such
that f (x, y) = (c, d). Take y to be a vector in W with no zero entries on the positions
corresponding to the edges in G. Then, the (x, y) satisfying f (x, y) = (c, d) corresponds to
a matrix Â ∈ S(G) such that the λ’s are the eigenvalues of Â and the τ ’s are the eigenvalues
of Â. �
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