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1. Introduction

Inverse eigenvalue problems (IEP’s) have long been studied because of many appli-
cations that they have in various areas of science and engineering [1,2]. That is, to find 
a matrix in a certain family of matrices with prescribed eigenvalues, eigenvectors, or 
both. In particular, structured inverse eigenvalue problems (SIEP’s) have received a lot 
of attention [3]. For example, one might be interested in finding matrices which have pre-
scribed eigenvalues where the solution matrix has a certain zero-nonzero pattern. In this 
paper we study an SIEP which asks about the existence of a real skew-symmetric matrix 
with a specific zero-nonzero pattern where the eigenvalues of the matrix and the eigenval-
ues of a principal submatrix of it are prescribed and are distinct. We shall give a precise 
formulation of the problem (which we call the λ −μ skew-symmetric SIEP), and a solution 
when the structure of the matrix is defined by a family of trees and their supergraphs.

Cauchy interlacing inequalities [4] assert that the eigenvalues of a real symmetric 
matrix and those of a principal submatrix of it satisfy certain inequalities. Namely, if A
is an n × n real symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and B is an 
(n −1) × (n −1) principal submatrix of A with eigenvalues μ1 ≤ μ2 ≤ · · · ≤ μn−1. Then

λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤ μn−1 ≤ λn. (1.1)

Note that Cauchy interlacing inequalities hold for any Hermitian matrix A in general. 
The spectrum of a square matrix A, denoted by σ(A), is the set of eigenvalues of A. For 
the preceding A and B, we say that σ(B) interlaces σ(A). If the inequalities in (1.1) are 
all strict, we say σ(B) strictly interlaces σ(A).

Here we introduce similar inequalities to Cauchy interlacing inequalities for skew-
symmetric matrices. Since all the eigenvalues of any skew-symmetric matrix are purely 
imaginary numbers, we define an ordering on the imaginary axis of the complex plane. 
Let i denote the complex number 

√
−1 and iR = {ia : a ∈ R}. For a, b ∈ iR we say a ≤ b

whenever −ia ≤ −ib, and the equality holds if and only if a = b. Let S = {a1, . . . , an}
be a subset of iR. S is said to be presented in increasing order if a1 ≤ a2 ≤ · · · ≤ an. 
Throughout this article we always present spectra of skew-symmetric matrices in increas-
ing order. If S = {a1, . . . , an} is presented in increasing order, then a1 is said to be the 
smallest element of S, a2 is said to be the second smallest element of S, and so on.

Let A = {λ1, . . . , λn} and B = {μ1, . . . , μn−1} be subsets of iR, presented in increasing 
order. B is said to interlace A if λ1 ≤ μ1 ≤ λ2 ≤ · · · ≤ μn−1 ≤ λn. Similarly B is said 
to strictly interlace A if λ1 < μ1 < λ2 < · · · < μn−1 < λn. Now Cauchy interlacing 
inequalities for skew-symmetric matrices can be stated as follows.

Theorem 1.1 (Cauchy interlacing inequalities for skew-symmetric matrices). Let A be an 
n ×n real skew-symmetric matrix and B be an (n −1) × (n −1) principal submatrix of A. 
Then σ(B) interlaces σ(A).

Proof. Let A be an n × n real skew-symmetric matrix and B be an (n − 1) × (n − 1)
principal submatrix of A. Let σ(A) = {λ1, . . . , λn} and σ(B) = {μ1, . . . , μn−1}.
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Fig. 1. Tree T , and its subtrees Tj(6), j = 2, 3, 5.

Since A is a real skew-symmetric matrix, −iA is an n × n Hermitian matrix and −iB
is an (n − 1) × (n − 1) Hermitian matrix, principal submatrix of −iA. Also σ(−iA) =
{−iλ1, . . . , −iλn} and σ(−iB) = {−iμ1, . . . , −iμn−1}. Now by (1.1) for −iA and −iB, 
we have −iλ1 ≤ −iμ1 ≤ −iλ2 ≤ · · · ≤ −iμn−1 ≤ −iλn. Thus σ(B) interlaces σ(A). �

Let A = [ai,j ] be an n × n real symmetric or skew-symmetric matrix. We say A is of 
order n, and denote it by |A| = n. The graph of A, denoted by G(A), has the vertex set 
{1, 2, . . . , n} and the edge set {{i, j} : ai,j �= 0, 1 ≤ i < j ≤ n}. S(G) denotes the set 
of all real symmetric matrices whose graph is G. Similarly S−(G) denotes the set of all 
real skew-symmetric matrices whose graph is G.

For a vertex v of G, the set of all vertices of G that are adjacent to v is denoted 
by N(v). For a vertex w of a tree T , T (w) denotes the forest obtained from T by 
deleting the vertex w. If v is a neighbor of w in T , then Tv(w) denotes the connected 
component of T (w) having v as a vertex. Note that Tv(w) is a tree (see Fig. 1). For A
in S(T ) or S−(T ), A(w) denotes the principal submatrix of A corresponding to T (w)
and Av(w) denotes the principal submatrix of A corresponding to Tv(w). The graph 
obtained from Tv(w) by deleting vertex v is denoted by Tv′(w) and Av′(w) denotes the 
principal submatrix of Av(w) corresponding to Tv′(w). Also, for any matrix A, CA(x)
denotes the characteristic polynomial of A.

The following result is obtained by Duarte [5].

Theorem 1.2. Let T be a tree on n vertices 1, 2, . . . , n with n ≥ 2. Let λ1, λ2, . . . , λn, 
μ1, . . . , μn−1 be 2n − 1 real numbers such that λ1 < μ1 < λ2 < · · · < μn−1 < λn. Then 
there exists a symmetric matrix A in S(T ) with eigenvalues λ1, λ2, . . . , λn such that the 
eigenvalues of A(1) are μ1, μ2, . . . , μn−1.

Later, Hassani Monfared and Shader [6] extended Theorem 1.2 to connected graphs. 
In this article we prove analogous results for real skew-symmetric matrices, with some 
combinatorial (sufficient) restrictions on the graph of the matrix. The structure of the 
paper is as follows.

In Section 2 trees with nearly even branching at a vertex v are defined, and it is 
shown that having the Duarte property with respect to a vertex in a matrix A implies 
the nearly even branching property at that vertex for G(A).
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In Section 3 we study the characteristic polynomials of a skew-symmetric matrix 
whose graph is a tree, and its relation to the characteristic polynomial of one of its 
principal submatrices. It is shown that if a tree has a nearly even branching property at 
a vertex v, then for any set of distinct eigenvalues that satisfy some necessary conditions, 
the λ −μ skew-symmetric SIEP has a solution. Furthermore, the solution has the Duarte 
property with respect to vertex v.

In Section 4 we define and study a function that takes a matrix A and maps it to 
its characteristic polynomial and the characteristic polynomial of a principal subma-
trix, A(v). It is shown that this map has a nonsingular Jacobian, when it is evaluated at 
a point corresponding to a matrix with the Duarte property with respect to v.

Finally, in Section 5 we extend the result for trees with nearly even branching property 
at a vertex to their supergraphs with the aid of the Implicit Function Theorem.

2. The Duarte property and trees with the nearly even branching property

In this section we define a special property, called the Duarte-property [6], of a square 
matrix whose graph is a tree. Then we define a certain family of trees and discuss its 
properties.

Definition 2.1. Let A be an n ×n matrix whose graph is a tree. If G(A) has just one vertex, 
then A has the Duarte-property with respect to w. If G(A) has more than one vertex, then 
A has the Duarte-property with respect to w provided the eigenvalues of A(w) strictly 
interlace those of A and for each neighbor v of w, Av(w) has the Duarte-property with 
respect to the vertex v.

Example 2.2. Consider the matrix A below whose graph is T .

A =

⎡
⎢⎢⎢⎢⎢⎣

0 8 0 0 0
−8 0 4 0 1

0 −4 0 2 0
0 0 −2 0 0
0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦, T :

1

2

53

4

Then

A(1) =

⎡
⎢⎢⎢⎣

0 4 0 1
−4 0 2 0

0 −2 0 0
−1 0 0 0

⎤
⎥⎥⎥⎦, T (1):

2

53

4
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Fig. 2. Examples of NEB trees.

Fig. 3. Nonexamples of NEB trees.

The eigenvalues of A are approximately 0, ±9.05i, and ±1.78i. The eigenvalues of A(1)
are approximately ±4.56i and ±0.44i, which strictly interlace those of A. The eigenvalue 
of (A2(1))5(2) = [ 0 ] is 0, and the eigenvalues of (A2(1))3(2) =

[ 0 2
−2 0

]
are ±2i, which both 

strictly interlace those of A2(1). And finally, the eigenvalue of ((A2(1))3(2))4(3) = [ 0 ]
is 0 which strictly interlace those of (A2(1))3(2). Thus, A has the Duarte property with 
respect to vertex 1.

Definition 2.3. Let T be a tree on n vertices, and w be a vertex of T . T is defined to 
have nearly even branching property at w (in short, T is NEB at w) as follows. If n = 1, 
T is NEB at w. If n ≥ 2, T is NEB at w if the following conditions are satisfied:

(i) T (w) has exactly one odd component if n is even, and T (w) has no odd component 
if n is odd; and

(ii) for each neighbor v of w in T , Tv(w) is NEB at v.

Example 2.4. Every path is NEB with respect to a pendent vertex. Every star with at 
least 4 vertices is not NEB with respect to any vertex. In Fig. 2, P is NEB at v since P (v)
has only one vertex. Also, Q is NEB at v since Q(v) has only one connected component 
which is a copy of P and it is shown that P is NEB at its top vertex. Furthermore, T is 
NEB at v since T (v) has only one odd connected component, and all of its components 
have either one vertex or are copies of P which are NEB at their top vertices. Similarly, 
S is NEB at v since S(v) has only one odd connected component (a copy of Q) and all 
of its connected components (two copies of P and one copy of Q) are NEB at their top 
vertices.

In Fig. 3, K is not NEB at v, since K(v) has 2 odd connected component (2 isolated 
vertices). Also, L is not NEB at v, since L(v) has 3 odd components (3 isolated vertices). 
Furthermore, while F (v) has exactly one odd component, F is not NEB at v, since Fw(v)
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is a copy of K which is not NEB at w. Moreover, G is not NEB at v, since G(v) has 2 
odd components (an isolated vertex and a copy of Q). Eventually, while H(v) has exactly 
one odd component, H is not NEB tree at v, since Hw(v) is a copy of F which is not 
NEB at w.

The following theorem shows that having the Duarte property implies the nearly even 
branching property.

Theorem 2.5. If a tree T of order n ≥ 3 is not NEB at a vertex v, then no A ∈ S−(T )
has the Duarte property with respect to the vertex v.

Proof. Let T be a tree of order n ≥ 3 which is not NEB at a vertex v. Let N(v) =
{v1, . . . , vk}. Let A be in S−(T ) with σ(A) = {λ1, . . . , λn} and σ(A(v)) = {μ1, . . . , μn−1}. 
We will induct on the number of vertices. For n = 3, the only tree on 3 vertices which 
is not NEB with respect to a vertex is the path on 3 vertices, and it is not NEB with 
respect to the middle vertex. Let T be K1,2 in Fig. 2.

Then 0 ∈ σ(A), and also 0 ∈ σ(A(v)). That is, σ(A(v)) does not strictly interlace 
σ(A). So, A does not have the Duarte property with respect to vertex v.

Induction hypothesis: Assume that for any tree T on at most n − 1 vertices which is 
not NEB with respect to a vertex v, any A ∈ S−(T ) does not have the Duarte property 
with respect to v.

Now, let T be a tree on n vertices which is not NEB with respect to a vertex v, and 
let N(v) = {v1, . . . , vk} be the set of all neighbors of v in T . If σ(A(v)) does not strictly 
interlace σ(A) then we are done. Otherwise there are two cases:

Case 1. n is even.
Since n is even and T is not NEB at a vertex v, one of the followings is true.

(a) T (v) has at least two odd components.
(b) Tj(v) is not NEB at a vertex j, for some j ∈ N(v).

First note that since n is even, σ(A) does not contain 0, and also T (v) contains at least one 
odd component. If (a) holds, then Tr(v) and Ts(v) are distinct odd components for some 
distinct r and s in N(v). Since |Ar(v)| and |As(v)| are odd, each of σ(Ar(v)) and σ(As(v))
contains 0. That implies multiplicity of 0 in σ(A(v)) is at least two, hence by Cauchy 
interlacing inequalities 0 ∈ σ(A). Thus, σ(A(v)) does not strictly interlace σ(A). If (b) 
holds, then Aj(v) does not have the Duarte property with respect to j by the induction 
hypothesis. Hence A does not have the Duarte property with respect to v by definition.

Case 2. n is odd.
Since n is odd and T is not an NEB at v, one of the followings is true.

(a) T (v) has at least one odd component.
(b) Tj(v) is not NEB at j, for some j ∈ N(v).
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First note that since n is odd, σ(A) contains 0. If (a) holds, then Tr(v) is an odd 
component for some r ∈ N(v). Since |Ar(v)| is odd, σ(Ar(v)) contains 0. Thus σ(A(v))
does not strictly interlace σ(A). Finally if (b) holds, then Aj(v) does not have the Duarte 
property with respect to j by induction hypothesis. Hence A does not have the Duarte 
property with respect to v by definition. �

In the following lemma we show that having the Duarte property for a matrix A is 
very special. That is, the only skew-symmetric matrix which almost commutes with A
and has a zero entry whenever A has zero entries, is the zero matrix. The proof is a very 
similar to that of Lemma 2.2 of [6].

Lemma 2.6. For matrices A and B, let [A, B] denote the commutator of A and B, that is, 
[A, B] = AB−BA. Assume that A is a skew-symmetric matrix of order n and G(A) is a 
tree T . Furthermore, assume that A has the Duarte-property with respect to the vertex w. 
Let X be a skew-symmetric matrix such that

(a) A ◦X = O, and
(b) [A, X](w) = O.

Then X = O.

Proof. The proof is by induction on n. Without loss of generality we can take w = 1, 
and N(1) = {2, 3, . . . , k+1}. For n ≤ 2, (a) and the fact that X is skew-symmetric imply 
that X = O.

Induction hypothesis: Assume that for any m × m matrix A, m ≤ l, for l < n, the 
only skew-symmetric matrix that satisfies conditions (a) and (b) is the zero matrix.

Assume n ≥ 3 and proceed by induction. For i = 1, 2, . . . , k, let Ai denote the matrix 
Ai+1(1). Then the matrices A and X, up to a permutation of rows and columns, have 
the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 bT1 bT2 · · · bTk
−b1 A1 O · · · O

−b2 O A2 · · · O
...

...
...

. . .
...

−bk O O · · · Ak

⎤
⎥⎥⎥⎥⎥⎥⎦
, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 uT
1 uT

2 · · · uT
k

−u1 X11 X12 · · · X1k
−u2 X21 X22 · · · X2k

...
...

...
. . .

...
−uk Xk1 Xk1 · · · Xkk

⎤
⎥⎥⎥⎥⎥⎥⎦
,

so that each column vector bi has exactly one nonzero entry since it is a tree. Without 
loss of generality we take this nonzero entry of each bi to be in its first position. Thus 
the Ai’s correspond to the Tv(w)’s.

The (2, 2)-block of [A, X] is

−b1u
T
1 + [A1, X11] + u1b

T
1 = O.
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Thus [A1, X11] = b1u
T
1 − u1b

T
1 . Since b1 has just one nonzero entry, the nonzero entries 

of b1uT
1 − u1b

T
1 lie in its first row or first column. Thus [A1, X11](1) = O.

So, A1 and X11 satisfy the induction hypothesis, and thus X11 = O and b1uT
1 −

u1b
T
1 = O. But the first row of b1uT

1 − u1b
T
1 is a nonzero multiple of uT

1 , we con-
clude that u1 is the zero vector. Similarly, one can show that each of X22, X33, . . . , Xkk, 
u2, u3, . . . , uk is zero.

Consider the (r + 1, s + 1)-block of [A, X], where r �= s. By (b), ArXrs = XrsAs. 
Since A has the Duarte-property with respect to vertex 1, Ar and As have no common 
eigenvalue. Since ArXrs = XrsAs, and Ar and As do not have a common eigenvalue, 
Xrs = O [6, Lemma 1.1 (a)]. This holds for all r and s. Thus X = O. �
3. The λ − μ skew-symmetric SIEP for trees

In this section we formulate the λ − μ skew-symmetric SIEP for the class of NEB 
trees and provide a solution for it. Recall that, the characteristic polynomial of a real 
skew-symmetric matrix is a real polynomial. So, all of its eigenvalues occur in conjugate 
pairs. So, one of the necessary assumptions for this problem to have a solution is that the 
prescribed eigenvalues to come as conjugate pairs. The following theorem is our main 
theorem for this section and we provide the proof after mentioning some preliminary 
results.

Theorem 3.1. Let T be a tree on n vertices 1, 2, . . . , n with n ≥ 2. Let

λ1 < μ1 < λ2 < · · · < μn−1 < λn

be 2n − 1 real numbers such that

λj = −λn+1−j ,

for all j = 1, . . . , n, and

μk = −μn−k,

for all k = 1, . . . , n − 1. If T is NEB at a vertex v, then there exists a skew-symmetric 
matrix A in S−(T ) with eigenvalues iλ1, iλ2, . . . , iλn such that the eigenvalues of A(v)
are iμ1, iμ2, . . . , iμn−1.

If p(x) is the characteristic polynomial of a real skew-symmetric matrix of order n, then 
the coefficient of xn−k is zero, for odd k. The lemma below shows that such polynomials 
behave rather nicely on the imaginary axis of the complex plane. In particular, they map 
the imaginary axis either to itself or to the real axis. We will use this fact later to show 
that certain functions have zeros on the imaginary axis.
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Lemma 3.2. Let p(x) =
∑n

j=0 ajx
n−j be a real polynomial where aj = 0 for all odd j. 

Then

(a) if n is even, then p(ia) is real for any real number a, and
(b) if n is odd, then p(ia) is purely imaginary for any real number a.

Proof. It follows from the fact that for any nonzero real number a, (ia)k is a real number, 
for any even integer k, and it is purely imaginary, for any odd integer k. �

The following lemma plays a key role in the proof of Theorem 3.1.

Lemma 3.3. Let λ1 < μ1 < λ2 < · · · < μn−1 < λn be 2n − 1 real numbers such that 
λj = −λn+1−j for all j = 1, . . . , n, and μk = −μn−k for all k = 1, . . . , n − 1. Let 
f(x) =

∏n
j=1(x − iλj) and g(x) =

∏n−1
j=1 (x − iμj). Then

(a) the coefficient of xn−1 in f(x) and the coefficient of xn−2 in g(x) are zero, and
(b) f(x)

g(x) = x +
∑n−1

j=1
cj

x−iμj
for some cj > 0 where ck = cn−k for k = 1, . . . , n − 1.

Proof. (a) The coefficient of xn−1 in f(x) is − 
∑n

j=1 iλj . Since λj = −λn+1−j for all 
j = 1, . . . , n, we have − 

∑n
j=1 iλj = 0. Similarly the coefficient of xn−2 in g(x) is zero.

(b) Since all the roots of g(x) are distinct, by the partial fraction decomposition we 
get

f(x)
g(x) = x + a +

n−1∑
j=1

cj
x− iμj

(3.1)

for some complex numbers a, cj. Since the coefficient of xn−1 in f(x) and the coefficient 
of xn−2 in g(x) are zero, by direct division of f(x) by g(x), we have a = 0, thus (3.1)
becomes

f(x)
g(x) = x +

n−1∑
j=1

cj
x− iμj

(3.2)

Multiplying both sides of (3.2) by g(x) we get

f(x) = xg(x) +
n−1∑
j=1

cjg(x)
x− iμj

(3.3)

Plugging x = iμk in (3.3), we get

f(iμk) =
n−1∑
j=1

cjg(iμk)
iμk − iμj

= in−2ck
∏

1≤j≤n−1
(μk − μj).
j �=k
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But by the definition of f , f(iμk) =
∏n

j=1(iμk − iλj) = in
∏n

j=1(μk − λj). Thus

ck =
in
∏n

j=1(μk − λj)
in−2 ∏ 1≤j≤n−1

j �=k
(μk − μj)

= −
∏n

j=1(μk − λj)∏
1≤j≤n−1

j �=k
(μk − μj)

. (3.4)

Since λ1 < μ1 < λ2 < · · · < μn−1 < λn, in (3.4) the product in the numerator has 
exactly n − k negative terms and the product in the denominator has exactly n − k − 1
negative terms. Thus ck is a positive real number.

Now we show that ck = cn−k for k = 1, . . . , n −1. Observe that in (3.4), λj = −λn+1−j , 
for j = 1, . . . , n, and μk = −μn−k, for k = 1, . . . , n − 1. There are two cases according to 
the parity of n. We consider the case when n is even, and it follows similarly when n is 
odd. Let n = 2l for some positive integer l. Suppose that n − k = 2l − k ≥ l + 1. Since 
μn−k = −μk,

cn−k = −
∏n

j=1(μn−k − λj)∏
1≤j≤n−1
j �=n−k

(μn−k − μj)
= −

∏n
j=1(−μk − λj)∏

1≤j≤n−1
j �=n−k

(−μk − μj)
.

Break each of the products in the right hand side above into two halves to get

cn−k = −
∏l

j=1(−μk − λj)
∏2l

j=l+1(−μk − λj)∏
1≤j≤l(−μk − μj)

∏
l+1≤j≤2l−1

j �=2l−k
(−μk − μj)

.

Since λn+1−k = −λk, by reordering the products we have

cn−k = −
∏2l

j=l+1(−μk + λj)
∏l

j=1(−μk + λj)∏
l+1≤j≤2l−1(−μk + μj)

∏
1≤j≤l
j �=k

(−μk + μj)
.

Factor a −1 from each term of each product

cn−k = −
[(−1)l

∏2l
j=l+1(μk − λj)][(−1)l

∏l
j=1(μk − λj)]

[(−1)l−1 ∏
l+1≤j≤2l−1(μk − μj)][(−1)l−1 ∏ 1≤j≤l

j �=k
(μk − μj)]

.

Now multiply all −1’s to get

cn−k = −
∏2l

j=l+1(μk − λj)
∏l

j=1(μk − λj)∏
l+1≤j≤2l−1(μk − μj)

∏
1≤j≤l
j �=k

(μk − μj)
= −

∏2l
j=1(μk − λj)∏

1≤j≤2l−1
j �=k

(μk − μj)
= ck.

If n − k = 2l − k ≤ l, it can be proved similarly. Also, the case for n odd follows 
similarly. �



K. Hassani Monfared, S. Mallik / Linear Algebra and its Applications 471 (2015) 241–263 251
The following lemma may be proved using techniques similar to that of the proof of 
Lemma 2 in [8]. A similar lemma is used in [5] in the case of Hermitian matrix A whose 
graph is a tree.

Lemma 3.4. Let T be a tree on n vertices 1, . . . , n, with 1 ≤ v ≤ n. Let A = [ak,l] be a 
skew-symmetric matrix such that G(A) = T . Then

CA(x)
CA(v)(x) = x +

∑
j∈N(v)

a2
vj

CAj′ (v)(x)
CAj(v)(x) .

For further details on the characteristic polynomial of the skew-adjacency matrix of 
a graph see [9]. Now we have all the tools to prove the main theorem of this section 
(Theorem 3.1). Recall that, we want to prove if T is a tree on n vertices, λ1 < μ1 < λ2 <

· · · < μn−1 < λn are 2n −1 real numbers such that λj = −λn+1−j and μk = −μn−k, and 
if T is NEB at a vertex v, then there exists a real skew-symmetric matrix A in S−(T )
with eigenvalues iλ1, iλ2, . . . , iλn such that the eigenvalues of A(v) are iμ1, iμ2, . . . , iμn−1.

Proof of Theorem 3.1. We prove this by induction on n.
For n = 2, μ1 = 0 and the desired matrix is 

[ 0 λ1
−λ1 0

]
.

Now assume that the result is true for all p < n. There are two cases for n, we prove 
the result when n is even, the case when n is odd follows similarly.

Without loss of generality assume that, v = 1 and N(v) = {2, . . . , m}. For each 
j ∈ N(v) let gj(x) be the monic polynomial such that deg(gj) = |Tj(v)| and roots of 
gj are 0 or complex conjugate purely imaginary numbers. Let g = g2 · · · gm such that 
g(x) =

∏n−1
j=1 (x − iμj), this is possible because T is NEB at v. Let f(x) =

∏n
j=1(x − iλj). 

By the partial fraction decomposition we get

f(x)
g(x) = x + a +

∑
j∈N(v)

yj
hj(x)
gj(x) ,

for some complex numbers a, y2, . . . , ym and unique monic polynomials h2, . . . , hm with 
deg hj < deg gj , for each j ∈ N(v). By Lemma 3.3(a), we get a = 0 and then

f(x)
g(x) = x +

∑
j∈N(v)

yj
hj(x)
gj(x) . (3.5)

Now we use the following claims which are proved at the end of this proof.

Claim 1. For each j ∈ N(v), yj is a positive real number.
Claim 2. The polynomial hj(x) is a real polynomial in x for each j = 2, . . . , m. Moreover, 

if deg(hj) is even, then the coefficients of the odd powers of x in hj(x) are zero, and 
if deg(hj) is odd, then the coefficients of the even powers of x in hj(x) are zero.
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Claim 3. For each j = 2, . . . , m, hj has deg gj − 1 distinct roots and the roots of hj

strictly interlace the roots of gj .

Since Tj(v) is an NEB tree at j, by the induction hypothesis, there exists Bj ∈
S−(Tj(v)) with characteristic polynomial gj such that hj is the characteristic polynomial 
of Bj′(v).

Now define an n ×n skew-symmetric matrix A = [aj,k] such that av,j = −aj,v = √
yj , 

Aj(v) = Bj for j ∈ N(v), and all other entries of A are zero.
By construction of A, g is the characteristic polynomial of A(v). Finally by Lemma 3.4, 

A has eigenvalues iλ1, iλ2, . . . , iλn.

Proof of Claim 1. There are two cases according to the parity of deg gj . First, let deg gj =
2l for some positive integer l. Let

gj(x) =
l∏

r=1
(x− iμkr

)(x− iμn−kr
).

Thus

yj
hj(x)
gj(x) =

l∑
r=1

ckr

x− iμkr

+ cn−kr

x− iμn−kr

, (3.6)

for some complex numbers ck1 , . . . , ckl
, cn−k1 , . . . , cn−kl

. By Lemma 3.3(b), ck1 , . . . , ckl
,

cn−k1 , . . . , cn−kl
are positive real numbers. Note that from (3.6) we have yj =

∑l
r=1 ckr

+
cn−kr

. Since ck1 , . . . ckl
are positive real numbers, yj > 0. When deg gj = 2l+1, for some 

positive integer l, the only other factor of gj is x, hence

yj
hj(x)
gj(x) = c0

x
+

l∑
r=1

ckr

x− iμkr

+ cn−kr

x− iμn−kr

, (3.7)

and the claim follows similarly. �
Proof of Claim 2. Recall that ck = −cn−k and μk = −μn−k for k = 1, . . . , n −1. Assume 
that deg(gj) is even. From (3.6) we have

yj
hj(x)
gj(x) =

l∑
r=1

ckr

x− iμkr

+ ckr

x + iμkr

=
l∑

r=1

2ckr
x

x2 + μ2
kr

(3.8)

=
x
∑l

r=1 2ckr

∏l
s=1
s �=r

(x2 + μ2
ks

)∏l
r=1(x2 + μ2

kr
)

= x

gj(x)

l∑
r=1

2ckr

l∏
s=1

(
x2 + μ2

ks

)
(3.9)
s �=r
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Hence,

hj(x) = x

yj

l∑
r=1

2ckr

l∏
s=1
s �=r

(
x2 + μ2

ks

)
.

Since yj , ck1 , . . . , ckl
are real numbers, hj(x) is a real polynomial of odd degree, and the 

coefficients of the even powers of x in hj(x) are zero. Similarly, when deg(gj) is odd, hj is 
a real polynomial of even degree and the coefficients of the odd powers of x in hj(x) are 
zero. �
Proof of Claim 3. Let μri be the smallest root of gj and μr+pi be the second smallest 
root of gj . Then from (3.5) we have

f(μri) = g(μri) · yj
hj(μri)
gj(μri)

= yjhj(μri)
m∑
t=2
t�=j

gt(μri). (3.10)

Similarly from (3.5) we have

f(μr+pi) = yjhj(μr+pi)
m∑
t=2
t�=j

gt(μr+pi). (3.11)

Let Rj be the set of the all roots of g(x)
gj(x) for each j = 2, . . . , m. Then by (3.10) and 

(3.11) we have

f(μri) = yjhj(μri)
∑
μ/∈Rj

(μr − μ)in−nj , (3.12)

f(μr+pi) = yjhj(μr+pi)
∑
μ/∈Rj

(μr+p − μ)in−nj . (3.13)

We know that f(x) =
∏n

k=1(x − iλk). Then we have

f(μri) =
n∏

k=1

(μri− λki) = in
n∏

k=1

(μr − λk), (3.14)

f(μr+pi) =
n∏

k=1

(μr+pi− λki) = in
n∏

k=1

(μr+p − λk). (3.15)

Since n is even, f(μri) and f(μr+pi) are real numbers (if n is odd, then f(μri) and 
f(μr+pi) are purely imaginary numbers). If p is odd, then there are p λ’s between μr

and μr+p. Then by (3.14) and (3.15), f(μri) and f(μr+pi) have the opposite signs. Now 
by direct counting of μ’s, 

∑
μ/∈R (μr−μ) and 

∑
μ/∈R (μr+p−μ) have the same sign. Thus 
j j
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by (3.12) and (3.13), hj(μri) and hj(μr+pi) have the opposite signs. Similarly when p is 
even we can show that hj(μri) and hj(μr+pi) have the opposite signs. First note that, 
by Claim 2 and Lemma 3.2, gj is a real polynomial that maps iR to either iR or R. Then 
by the Intermediate Value Theorem, hj has a purely imaginary root between each two 
consecutive roots of gj . Thus deg hj = deg gj − 1 and the roots of hj strictly interlace 
the roots of gj . �

This completes the proof. �
By the construction of A in the proof of the preceding theorem, it is clear that A has 

the Duarte property with respect to vertex v.

Corollary 3.5. The matrix A constructed in the proof of Theorem 3.1 has the Duarte 
property with respect to vertex v.

Remark 3.6. For a tree T , Theorem 2.5 shows that if a matrix A ∈ S−(T ) has the Duarte 
property with respect to a vertex v, then T is NEB at v. Conversely, Corollary 3.5 shows 
that if T is NEB at a vertex v, then there is an A ∈ S−(T ) which is Duarte with respect 
to v.

Example 3.7. Let T be the path P4 on four vertices 1, 2, 3 and 4 where vertex 4 is a 
pendent vertex. Consider seven real numbers −2 < −1.5 < −1 < 0 < 1 < 1.5 < 2. 
Following the proof of Theorem 3.1, we will find a 4 × 4 real skew-symmetric matrix A
such that G(A) = P4, the eigenvalues of A are ±i, ±2i, and the eigenvalues of A(4) are 0, 
±1.5i. An approximation for such matrix is given below.

A �

⎡
⎢⎢⎢⎣

0 1.206045 0 0
−1.206045 0 0.8918826 0

0 −0.8918826 0 1.658312
0 0 −1.658312 0

⎤
⎥⎥⎥⎦

1

2 3

4

P4

It is easy to check that A has the Duarte property with respect to vertex 4: Eigen-
values of A are approximately ±i, ±2i, eigenvalues of A(4) are approximately 0, ±1.5i, 
eigenvalues of A({4, 3}) are approximately ±1.206045i, and finally, and the eigenvalue of 
A({4, 3, 2}) is 0. They satisfy the strict interlacing inequality conditions in the definition 
of the Duarte property.

A matching in a graph G is a set of vertex-disjoint edges. A maximum matching in 
G is a matching with the maximum number of edges among all matchings in G. The 
matching number, denoted by match(G), is the number of edges in a maximum matching 
in G. The following observation shows that if a tree T is NEB at a vertex, then match(T )
is as large as possible.
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Observation 3.8. Suppose T is a tree of order n. If T is NEB at a vertex, then 
match(T ) = 	n

2 
.

Proof. Suppose that T is NEB at a vertex. Then by Theorem 3.1, we can find some 
A in S−(T ) with distinct eigenvalues. Note that any A in S−(T ) has rank less than or 
equal to 2 match(T ) [7, Theorem 2.5]. If match(T ) < 	n

2 
, then for any A in S−(T ) the 
multiplicity of the eigenvalue 0 of A is at least 2. Thus match(T ) = 	n2 
. �
4. A polynomial map and its Jacobian

For the remainder of the paper fix T to be an NEB tree at vertex n. Assume T has 
vertices 1, 2, . . . , n and edges e1 = {i1, j1}, . . . , en−1 = {in−1, jn−1}, where ik < jk for 
k = 1, . . . , n − 1. Let x1, x2, . . . , xn−1 be n − 1 independent indeterminates, and set

x = (x1, x2, . . . , xn−1).

Define M(x) to be the matrix with xk in the (ik, jk) and −xk in the (jk, ik) positions 
(k = 1, 2, . . . , n − 1), and zeros elsewhere. Set N(x) = M(x)(n); that is, N(x) is the 
principal submatrix obtained from M(x) by deleting its last row and column. We denote 
these matrices by M and N for short.

Example 4.1. Consider the tree T from Example 3.7. The adjacency matrix of T is

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤
⎥⎥⎥⎦ .

Thus

M =

⎡
⎢⎢⎢⎣

0 x1 0 0
−x1 0 x2 0
0 −x2 0 x3
0 0 −x3 0

⎤
⎥⎥⎥⎦ , N = M(4) =

⎡
⎢⎣ 0 x1 0
−x1 0 x2
0 −x2 0

⎤
⎥⎦ .

Suppose that tn + c1t
n−1 + · · ·+ cn−1t + cn and tn−1 +d1t

n−2 + · · ·+dn−2t +dn−1 are 
the characteristic polynomials of M and N , respectively. We now define four polynomial 
maps associated with M and N .

Let G : Rn−1 → R2n−1 be the polynomial map defined by

G(x) = (c1, c2, . . . , cn, d1, d2, . . . , dn−1). (4.1)
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Since M and N are skew-symmetric matrices, ci and di are zero for odd i. So, the 
function G is mapping Rn−1 to an n −1 dimensional subspace of R2n−1. So by restricting 
the codomain of G we define a function g : Rn−1 → Rn−1 as follows.

g(x) = (c2, c4, . . . , d2, d4, . . .). (4.2)

The goal is to show that for a tree T on n vertices, and a matrix A ∈ S−(T ) with 
the Duarte property with respect to the vertex n, the Jacobian of g evaluated at the 
upper-triangular nonzero entries of A is nonsingular. This enables us to use the Implicit 
Function Theorem, in order to perturb the zero entries of A, particularly making them 
nonzero, and to adjust the nonzero entries to obtain a new matrix Â, such that the 
characteristic polynomials of Â and Â(n) are equal to those of A and A(n), respectively. 
That is, the graph of the matrix Â is a supergraph of T , and Â and Â(n) have the same 
eigenvalues as A and A(n), respectively.

It is not easy to show that the Jacobian of g is nonsingular at some point. So, we 
introduce the following functions.

Let F : Rn−1 → R2n−1 be the polynomial map defined by

F (x) =
(

trM
2 ,

trM2

4 , . . . ,
trMn

2n ,
trN

2 ,
trN2

4 , . . . ,
trNn−1

2(n− 1)

)
. (4.3)

Since M , N are skew-symmetric matrices, for each k we have trM2k−1 = trN2k−1 = 0, 
for all x. So by restricting the codomain of F we define a function f : Rn−1 → Rn−1 as 
follows.

f(x) =

⎧⎨
⎩ ( tr M2

4 , tr M4

8 . . . , tr M2m

4m , tr N2

4 , tr N4

8 , . . . , tr N2(m−1)

4(m−1) ) if n = 2m,

( tr M2

4 , tr M4

8 . . . , tr M2m

4m , tr N2

4 , tr N4

8 , . . . , tr N2m

4m ) if n = 2m + 1.
(4.4)

Example 4.2. Consider the matrices M and N from Example 4.1. Then

g(x1, x2, x3) =
(
x2

1 + x2
2 + x2

3, x
2
1x

2
3, x

2
1 + x2

2
)
,

and

f(x1, x2, x3) =
(
−x2

1 + x2
2 + x2

3
2 ,

(x4
1 + x4

2 + x4
3) + 2x2

2(x2
1 + x2

3)
4 ,−x2

1 + x2
2

2

)
.

Next, we give a closed formula for the Jacobian matrix of f evaluated at a certain 
point, and then we show that the above Jacobian matrix is nonsingular whenever A has 
the Duarte-property with respect to n. As it is mentioned in Section 3 of [6], note that 
by Newton’s identities, there is an infinitely differentiable, invertible h : Rn−1 → Rn−1

such that g ◦ h = f . Thus, the Jacobian matrix of f at a point x is nonsingular if and 
only if the Jacobian matrix of g at h(x) is nonsingular.
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Lemma 4.3. Let k be a positive even integer and (i, j) be a nonzero position of M with 
corresponding variable xt. Then

(a) ∂
∂xt

(trMk) = −2k(Mk−1)ij, and
(b) ∂

∂xt
(trNk) =

{
−2k(Nk−1)ij if neither i nor j is n

0 otherwise.

Proof. Without loss of generality, assume i < j. Let Eij be the matrix (of appropriate 
size) with a 1 in position (i, j) and 0s elsewhere. First, note that

∂

∂xt
M = Eij − Eji,

thus

∂

∂xt

(
tr
(
Mk

))
=

k−1∑
�=0

tr
(
M � · ∂

∂xt
M ·Mk−�−1

)
(by chain rule)

=
k−1∑
�=0

tr
(
Mk−1 · ∂

∂t
M

) (
since tr(AB) = tr(BA)

for all matrices A and B
)

= k tr
(
Mk−1(Eij − Eji)

)
= k

((
Mk−1)

ji
−

(
Mk−1)

ij

)
= −2k

(
Mk−1)

ij

(
since Mk−1 is skew-symmetric

)
.

A similar argument works for N , provided we note that if i or j equals n, then N does 
not contain xt, and consequently ∂

∂xt
N = 0. �

We will use the following notations in the rest of this paper.

Notation 4.4. Given any (n − 1) × (n − 1) matrix W , we set

W̃ =

⎡
⎢⎢⎢⎢⎣

W

0
...
0

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ .

Notation 4.5. Given a matrix A = [ai,j ] ∈ S−(T ) we denote by Jac(f)|A the matrix 
obtained from Jac(f) by evaluating at (x1, . . . , xn−1) where xk equals the corresponding 
entry of A, for k = 1, 2, . . . , n − 1.

Using Notations 4.4 and 4.5, Lemma 4.3 implies the following.
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Corollary 4.6. Let T be a tree defined as above on n vertices, and A ∈ S−(T ), and let 
B = A(n). Then

− Jac(f)
A

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai1j1 Ai2j2 · · · Ain−1jn−1

A3
i1j1

A3
i2j2

· · · A3
in−1jn−1

...
...

. . .
...

An−1
i1j1

An−1
i2j2

· · · An−1
in−1jn−1

B̃i1j1 B̃i2j2 · · · B̃in−1jn−1

B̃3
i1j1

B̃3
i2j2

· · · B̃3
in−1jn−1

...
...

. . .
...

B̃n−3
i1j1

B̃n−3
i2j2

· · · B̃n−3
in−1jn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

or

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ai1j1 Ai2j2 · · · Ain−1jn−1

A3
i1j1

A3
i2j2

· · · A3
in−1jn−1

...
...

. . .
...

An−2
i1j1

An−2
i2j2

· · · An−2
in−1jn−1

B̃i1j1 B̃i2j2 · · · B̃in−1jn−1

B̃3
i1j1

B̃3
i2j2

· · · B̃3
in−1jn−1

...
...

. . .
...

B̃n−2
i1j1

B̃n−2
i2j2

· · · B̃n−2
in−1jn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The former happens when n is even, and the latter happens when n is odd.

Theorem 4.7. Let T be an NEB tree at vertex n. Let matrices A, B, and function f (the 
function defined in terms of the traces of M and N , Eq. (4.4)) be defined as above. If A
has the Duarte-property with respect to vertex n, then Jac(f)|A is nonsingular.

Proof. Note that Jac(f)|A is nonsingular if and only if the only vector α = (α1, α2, . . . ,
αn−1)T such that αT Jac(f)|A = (0, . . . , 0) is the zero-vector.

Let Jac(f)k denote the k-th row of − Jac(f)|A. So αT Jac(f)|A =
∑n−1

k=1 αk Jac(f)k. 
There are two cases:

Case 1. n = 2m.
For � = 1, . . . , n − 1, the �-th entry in αT Jac(f)|A is the (i�, j�)-entry of

m∑
r=1

αrA
2r−1 +

m−1∑
r=1

αm+rB̃
2r−1.

In this case let p(x) =
∑m

r=1 αrx
2r−1, and q(x) =

∑m−1
r=1 αm+rx

2r−1.
Case 2. n = 2m + 1.

For � = 1, . . . , n − 1, the �-th entry in αT Jac(f)|A is the (i�, j�)-entry of

m∑
r=1

αrA
2r−1 +

m∑
r=1

αm+rB̃
2r−1.

In this case let p(x) =
∑m

r=1 αrx
2r−1, and q(x) =

∑m
r=1 αm+rx

2r−1.
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Let

X = p(A) + q̃(B),

where q̃(B) is constructed from the matrix q(B) by padding it with a zero row and a 
zero column, as in Notation 4.4. Note that since X only involves the odd powers of 
skew-symmetric matrices, it is skew-symmetric. Also, note that the columns of Jac(f)|A
correspond to the nonzero positions of A. Thus, in either case αT Jac(f)|A is the zero 
vector if and only if Xij = 0 where Aij is nonzero. That is, X satisfies X ◦ A = O and 
X ◦ I = O. So, in order to show Jac(A) is nonsingular we will show that p(x) and q(x)
are zero polynomials.

Observe that [A, p(A)] = O, hence [A, X] = [A, q̃(B)]. Also, note that since A(n) = B, 
[A, q̃(B)](n) = O. Thus, [A, X](n) = O, and by Lemma 2.6 we conclude that X = O. 
The rest of the proof is similar to that of Theorem 3.3 of [6]. X = O implies that 
p(A) = −q̃(B). Let Y := p(A) = −q̃(B), then AY = Ap(A). We want to show that 
Y = O. Multiplying A and p(A) we get

Ap(A) = −A
(
q̃(B)

)
= −

⎡
⎢⎢⎢⎢⎣

B

∗
...
∗

∗ · · · ∗ ∗

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q(B)
0
...
0

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
−Bq(B)

0
...
0

∗ · · · ∗ 0

⎤
⎥⎥⎥⎥⎦ ,

and

p(A)A = −
(
q̃(B)

)
A = −

⎡
⎢⎢⎢⎢⎣

q(B)
0
...
0

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

B

∗
...
∗

∗ · · · ∗ ∗

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
−q(B)B

∗
...
∗

0 · · · 0 0

⎤
⎥⎥⎥⎥⎦ .

Since Ap(A) = p(A)A, the last row of Ap(A) is zero and the last column of Ap(A)
is zero. Thus, Ap(A) = −q̃(B)B̃ = p(A)B̃. That is, AY = Y B̃. Hence, either Y = O, 
or A and B̃ have a common eigenvalue [6, Lemma 1.1 (a)]. If Y = O we are done. 
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Otherwise, since A and B have no common eigenvalue, A and B̃ both have an eigenvalue 
0 of multiplicity one.

Let Yj be a the j-th column of Y , and assume that it is nonzero. Observe that 
the last entry of Yj is 0. By Lemma 1.1 (b) of [6], Yj is a generalized eigenvector of 
A corresponding to 0. Since A is skew-symmetric with distinct eigenvalues, Yj is an 
eigenvector of A corresponding to 0. This implies that the vector Yj(n) is a nonzero 
eigenvector of B corresponding to 0. This leads to the contradiction that A and B have 
a common eigenvalue. Thus Y = O.

Since Y = O, p(A) = O and q(B) = O. Note that p(x) is a polynomial of degree at 
most n − 1. Since A has n distinct eigenvalues, its minimal polynomial has degree n. 
Thus p(x) is the zero polynomial. Similarly, q(x) is the zero polynomial. So Jac(f)|A is 
nonsingular. �
5. The λ − μ skew-symmetric SIEP for connected graphs with an NEB spanning tree

We have shown that for any NEB tree T at a vertex v, and sets of ‘generic’ purely 
imaginary numbers, one can find a real skew-symmetric matrix A with graph T and 
the spectra given by the specified purely imaginary numbers. Furthermore, we showed 
that A is a ‘generic’ solution. Now, we are going to use the Implicit Function Theorem 
(see [10]) to find a solution Â where G(Â) is a supergraph of T .

Theorem 5.1. Let F : Rs+r → Rs be a continuously differentiable function on an open 
subset U of Rs+r defined by

F (x, y) =
(
F1(x, y), F2(x, y), . . . , Fs(x, y)

)
,

where x = (x1, . . . , xs) ∈ Rs and y ∈ Rr. Let (a, b) be an element of U with a ∈ Rs and 
b ∈ Rr, and c be an element of Rs such that F (a, b) = c. If

[
∂Fi

∂xj

∣∣∣∣
(a,b)

]

is nonsingular, then there exist an open neighborhood V containing a and an open neigh-
borhood W containing b such that V ×W ⊆ U and for each y ∈ W there is an x ∈ V

with F (x, y) = c.

Theorem 5.2. Let G be a connected graph on n vertices 1, 2, . . . , n with n ≥ 2. Let

λ1 < μ1 < λ2 < · · · < μn−1 < λn

be 2n − 1 real numbers such that

λj = −λn+1−j ,
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for all j = 1, . . . , n, and

μk = −μn−k,

for all k = 1, . . . , n − 1. If G has a spanning NEB tree T at a vertex v, then there 
exists a skew-symmetric matrix A in S−(T ) with eigenvalues iλ1, iλ2, . . . , iλn such that 
the eigenvalues of A(v) are iμ1, iμ2, . . . , iμn−1.

Proof. Without loss of generality assume that v = n. By Theorem 3.1 there is an A ∈
S−(T ) such that A has eigenvalues iλ1, . . . , iλn, A(n) has eigenvalues iμ1, . . . , iμn−1, and 
A has the Duarte-property with respect to n. By Theorem 4.7, the Jacobian of the f
defined in (4.4) evaluated at A is nonsingular. Thus, the Jacobian matrix of the function g

defined by (4.2) at A is nonsingular.
The rest of the proof is similar to that of Theorem 4.2 of [6]. Assume that G has r edges 

not in T and let y1, . . . , yr be r new variables other than x1, . . . , xn−1. We can extend 
the function g : Rn−1 → Rn−1 to a function ĝ : R(n−1)+r → Rn−1 by replacing each pair 
of entries of M (and N) corresponding to an edge of G not in T by one of the yi’s. Let 
ĝ(x, y) be the vector of nonleading coefficients of the characteristic polynomials of M
and N . Let ĝ(x, y)|A = (c, d).

Since each of the n − 1 entries of A corresponding to the variable xj is nonzero, there 
is an open neighborhood U of (ai1,j1 , . . . , ain−1,jn−1 , 0, . . . , 0) each of whose elements has 
no zeros in its first n − 1 entries. By Theorem 5.1, there is an open neighborhood V of 
(ai1,j1 , . . . , ain−1,jn−1) and an open neighborhood W of (0, 0, . . . , 0) such that V ×W ⊆ U

and for each y ∈ W there is an x ∈ V such that ĝ(x, y) = (c, d). Take y to be a vector 
in W with no zero entries. Then, the graph of the matrix obtained from this choice of x
and y, Â, is G, and also ĝ(x, y) = (c, d), that is, the iλj ’s are the eigenvalues of Â and 
the iμj ’s are the eigenvalues of Â(n). �

Given λ1 < λ2 < · · · < λn it is easy to find μ1, μ2, . . . , μn−1 such that (1.1) holds. 
Hence Theorem 5.2 and Observation 3.8 immediately imply the following corollary.

Corollary 5.3. Let G be a connected graph on n vertices and λ1, λ2, . . . , λn distinct real 
numbers such that

λj = −λn+1−j ,

for all j = 1, . . . , n. If G has a spanning tree which is NEB at a vertex, then match(G) =
	n

2 
 and there exists a matrix A ∈ S−(G) with eigenvalues iλ1, . . . , iλn.

Example 5.4. We want to find a matrix whose graph is C4, the cycle of length 4, with 
eigenvalues ±i, ±2i, and its eigenvalues after deleting the forth row and columns are 
0, ±1.5i. Consider the matrix A = [aij ] constructed in Example 3.7 (mentioned below).
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A �

⎡
⎢⎢⎢⎣

0 1.206045 0 0
−1.206045 0 0.8918826 0

0 −0.8918826 0 1.658312
0 0 −1.658312 0

⎤
⎥⎥⎥⎦ .

Construct the matrices M and N as is Example 4.1:

M =

⎡
⎢⎢⎢⎣

0 x1 0 0
−x1 0 x2 0
0 −x2 0 x3
0 0 −x3 0

⎤
⎥⎥⎥⎦ , N = M(4) =

⎡
⎢⎣ 0 x1 0
−x1 0 x2
0 −x2 0

⎤
⎥⎦ .

And set of the function f as in Example 4.2:

f(x1, x2, x3) =
(
−x2

1 + x2
2 + x2

3
2 ,

(x4
1 + x4

2 + x4
3) + 2x2

2(x2
1 + x2

3)
4 ,−x2

1 + x2
2

2

)
.

Note that

f
A

=
(

trM2

4 ,
trM4

8 ,
trN2

4

)∣∣∣∣
A

� (−2.5, 4.25,−1.125),

and

Jac(f) =

⎡
⎢⎣ −x1 −x2 −x3
x3

1 + x1x
2
2 x2

1x2 + x3
2 + x2x

2
3 x2

2x3 + x3
3

−x1 −x2 0

⎤
⎥⎦ .

Also note that det(Jac(f)|A) = −x1x2x
3
3|A � 4.9053 �= 0. Hence by the Implicit 

Function Theorem, for small perturbations of a14 from 0 to ε, there are â12, â2,3, â3,4
such that

(
tr Â2

4 ,
tr Â4

8 ,
tr Â(1)2

4

)∣∣∣∣
A

� (−2.5, 4.25,−1.125).

For example if ε = 0.1, then â12 � 1.257633, â2,3 � 0.8175322, â3,4 � 1.655294, and

Â �

⎡
⎢⎢⎢⎣

0 1.257633 0 0.1
−1.257633 0 0.8175322 0

0 −0.8175322 0 1.655294
−0.1 0 −1.655294 0

⎤
⎥⎥⎥⎦

1

2 3

4

C4

It is easy to verify that the eigenvalues of Â are approximately ±i, ±2i, and the 
eigenvalues of Â(4) are approximately 0, ±1.5i. Furthermore the graph of Â is a cycle of 
length 4.
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