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λ1 < μ1 < λ2 < μ2 < · · · < μn−1 < λn,

and each tree T on n vertices there exists an n × n, real symmetric

matrixAwhosegraph isT such thatAhaseigenvaluesλ1, λ2, . . . , λn

and the principal submatrix obtained from A by deleting its last row

andcolumnhaseigenvaluesμ1, . . . , μn−1. This result is extended to

connected graphs through the use of the implicit function theorem.
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1. Introduction

Due to their importance in engineering applications, inverse eigenvalue problems have received

considerable attention. Many inverse eigenvalue problems reduce to the construction of amatrix with

prescribed spectral data. One interesting problem is based on the Cauchy interlacing inequalities for

symmetric matrices [1]. Let A be an n × n real matrix with eigenvalues λ1 � λ2 � · · · � λn, and B

be an (n − 1) × (n − 1) principal submatrix of A with eigenvalues μ1 � μ2 � · · · � μn−1. Cauchy

interlacing asserts that

λ1 � μ1 � λ2 � · · · � μn−1 � λn. (1)

The corresponding inverse eigenvalue problem is that of constructing an n×n, symmetricmatrixwith

a prescribed structure (e.g., tridiagonal, pentadiagonal, Toeplitz, etc) having eigenvalues λ1, . . . , λn
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and its trailing (n−1)×(n−1) principal submatrix having eigenvaluesμ1, . . . , μn−1, when the only

constraints are those in (1). Many results are known for this problem [2,5,6,8,9,12–18]. Specifically,

Duarte [4] has shown that for each such set of spectral data, each i ∈ {1, 2, . . . , n}, and each tree T

on n vertices, there is a symmetric matrix A with the same zero pattern of the adjacency matrix of

T , except maybe for the diagonal entries, such that A and the principal submatrix obtained from A

by deleting row and column i realize the given spectral data, provided that all the inequalities in (1)

are strict. We note that Duarte’s result is stated and proved for complex hermitian matrices, but his

proof carries over for real symmetric matrices. Throughout the remainder of the paper we restrict our

attention to real matrices.

A natural question, and one raised by Wayne Barrett at a recent conference, is: does a similar

result hold for arbitrary connected graphs G? This paper answers the question in the affirmative by

using an approach similar to the one known as the Jacobian method used in the study of spectrally

arbitrary patterns [7]. The Jacobian method, which depends on the implicit function theorem, asserts

that if a symmetric matrix with the appropriate spectral constraints is “sufficiently generic”, then

one can realize the prescribed spectral data for each superpattern of the matrix. In section 2, we

define and establish the basic properties of such a genericness property, which we call the Duarte-

property. In section 3, we study the polynomial function that maps the entries of a symmetric matrix

to the non-leading coefficients of its characteristic polynomial and the non-leading coefficients of

the characteristic polynomial of its trailing principal submatrix, and show that the nonsingularity of

this map’s Jacobian matrix can be expressed as algebraic conditions on the matrix and its trailing

principal submatrix. In section 4, we use the Duarte-property and the implicit function theorem to

extend Duarte’s result from trees to arbitrary connected graphs.

We conclude this introductory section with a basic matrix theoretic result that will be useful later.

The first part of the lemma is well-known (see for example [10]).

Lemma 1.1. Let A be anm×mmatrix, B be an n×nmatrix, and X be anm×nmatrix such that AX = XB.

Then the following hold:

(a) If A and B do not have a common eigenvalue, then X = O.

(b) If X �= O and A and B share exactly one common eigenvalue, then each nonzero column of X is a

generalized eigenvector of A corresponding to the common eigenvalue.

Proof. Note that the condition AX = XB implies that p(A)X = Xp(B) holds for each polynomial p(x).
Let p(x) = mB(x) be the minimal polynomial of B. Then mB(A)X = XmB(B) = O. Hence

(A − μ1I) · · · (A − μn−1I)X = O, (2)

where theμi’s are the eigenvalues of B. If A and B do not share a common eigenvalue, then each A−μjI

is invertible, and it follows that X = O.

If A and B share exactly one common eigenvalue, say μ, then each matrix A − μjI with μj �= μ is

invertible and hence by (2), (A−μI)kX = O for some positive integer k. This implies that each nonzero

column of X is a generalized eigenvector of A corresponding to the eigenvalue μ. �

2. The Duarte-property

A key to our main result is showing that for each tree T on n vertices, and each collection of 2n− 1

real numbers satisfying

λ1 < μ1 < λ2 < · · · < μn−1 < λn, (3)

there exists a “sufficiently generic” A ∈ S(T) such that λ1, . . . , λn are the eigenvalues of A and

μ1, . . . , μn−1 are the eigenvalues of A(n).
To make the term “sufficiently generic” more precise we need the following definitions. Let A be

an n× n symmetric matrix. For i ∈ {1, 2, . . . , n}, A(i) denotes the principal submatrix obtained from

A by deleting its ith row and column. The graph of A, denoted G(A), has vertex set 1, 2, . . . , n and an
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Fig. 1. Graph T [left] and subgraphs obtained by removing vertex 1 [right]

edge joining i and j if and only if i �= j and aij �= 0. Thus, G(A) does not depend upon the diagonal

entries of A.

Given a graph G with vertex set 1, 2, …, n, S(G) denotes the set of all real, symmetric matrices A

whose graph is G; that is, S(G) is the set of all n × n, symmetric matrices A = [aij] for which aij = 0 if

i �= j and i is not adjacent to j in G, and aij �= 0 if i �= j and i is adjacent to j in G.

For a vertex w of T , T(w) denotes the forest obtained from T by deleting the vertex w. If v is a

neighbor of w, then Tv(w) denotes the connected component of T(w) having v as a vertex. Note that

Tv(w) is necessarily a tree. For A ∈ S(T), A(w) denotes the principal submatrix of A corresponding to

T(w), and Av(w) denotes the principal submatrix of A corresponding to Tv(w).
For example, Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30 −2 −9 0 1

−2 4 0 −1 0

−9 0 −1 0 0

0 −1 0 4 0

1 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Then

A(1) =

⎡⎢⎢⎢⎢⎢⎢⎣
4 0 −1 0

0 −1 0 0

−1 0 4 0

0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,

and the graph T of A, T(1) and each of the Ti(1)’s are illustrated in Fig. 1.

The matrices related to each Ti(1) are

A2(1) =
⎡⎣ 4 −1

−1 4

⎤⎦ , A3(1) =
[
−1

]
, A5(1) =

[
2

]
.

We now recursively define what it means for a matrix A whose graph is a tree to have the Duarte-

property with respect to a chosen vertex w:

If G(A) has just one vertex, then A has the Duarte-property with respect to w. If G(A) has more

than one vertex, then A has the Duarte-property with respect tow provided the eigenvalues of A(w)
strictly interlace those of A and for each neighbor v ofw, Av(w) has the Duarte-propertywith respect

to the vertex v.
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For example, consider the matrix A in (4) and its graph T . Computation shows that the eigenvalues of

A are approximately −3.47, 1.98, 2.96, 4.95, 32.58, and eigenvalues of A(1) are −1, 2, 3, 5, and they

strictly interlace those of A. Furthermore, T3(1) and T5(1) are single vertices, so A3(1) and A5(1) have
the Duarte property. Now we have to verify that A2(1) has the Duarte property with respect to 2. The

eigenvalues of A2(1) are 3 and 5. The eigenvalue of (A2(1))(2) is 4, which strictly interlaces 3 and 5.

Also (T2(1))4(2) is a single vertex, so it has the Duarte property, Hence A2(1) has the Duarte property.
Altogether, this means that A has the Duarte property.

As we shall see in sections 3 and 4, possessing the Duarte-property with respect to a vertex is a

sufficient assumption on genericness for our purposes.

For each set ofλ’s andμ’s satisfying (3), Duarte [4] explicitly constructs amatrix A ∈ S(T) such that

the λ’s are the eigenvalues of A and the μ’s are the eigenvalues of A(n). We now show that Duarte’s

construction actually yields an Awith the Duarte-property with respect to n.

Lemma 2.1. Let T be a tree with vertices 1, 2, . . . , n with n � 2, w be a chosen vertex and λ1, . . . , λn,
μ1, . . . , μn−1 be real numbers satisfying (3). Then there exists an A ∈ S(T) with the Duarte-property

with respect to w such that the λ’s are the eigenvalues of A and the μ’s are the eigenvalues of A(w).

Proof. The proof is by induction on n. If T has two vertices, then the matrix

A =
⎡⎣ μ1

√
(λ2 − μ1)(μ1 − λ1)√

(λ2 − μ1)(μ1 − λ1) λ1 + λ2 − μ1

⎤⎦
has eigenvalues λ1 and λ2, A(2) has eigenvalue μ1, and A has the Duarte-property with respect to

2. Interchanging the rows of A, and then interchanging the columns, we obtain a matrix with the

Duarte-property with respect to 2 and the desired spectral conditions.

Assume n > 2 and proceed by induction. Let v1, . . . , vk be the vertices adjacent to w in T , let

g1(x), g2(x), . . . , gk(x) be monic polynomials such that the degree of gi is the number of vertices of

Tvi(w) (i = 1, 2, . . . , k) and

g1(x)g2(x) · · · gk(x) =
n−1∏
j=1

(x − μj).

As in [4] it can be shown that there exist real numbers aww, awvj(i = 1, 2, . . . , k) and real, monic

polynomials h1, . . . , hk such that∏n
i=1(x − λi)∏n−1
j=1 (x − μj)

= (x − aww) −
k∑

j=1

a2wvj
hj(x)

gj(x)
. (5)

Also, as in [4], it is possible to show that the roots of hj are real and strictly interlace those of gj for

each j.

By the induction hypothesis, there exist symmetric matrices Y1, . . . , Yk such that Yj has graph

Tvj(w), Yj has the Duarte-property with respect to vertex vj , Yj ’s characteristic polynomial is gj(x) and

Yj(vj)’s characteristic polynomial is hj(x) (j = 1, . . . , k).
Let A = [aij] be the n × nmatrix such that Avj(w) = Yj , aww , and awvj = avjw (j = 1, 2, . . . , k) are

the real numbers defined in (5), and all other entries of A are zero. Then A ∈ S(T) and, as in Duarte

[4], A and A(w) have the desired eigenvalues. Since (3) holds and each Yj has the Duarte-property with

respect to vj , A has the Duarte-property with respect of w. �

We now show that a matrix with the Duarte-property has a special property, somewhat akin to

the strong Arnold property [3]. Given square n × n matrices R and S we denote their commutator by

[R, S]; that is, [R, S] = RS − SR. Given matrices R and S of the same size, R ◦ S denotes their Schur (i.e.,

entrywise) product.

Lemma 2.2. Let A have the Duarte-property with respect to the vertex w, G(A) be a tree T, and X be a

symmetric matrix such that
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(a) I ◦ X = O,

(b) A ◦ X = O,

(c) [A, X](w) = O,

then X = O.

Proof. The proof is by induction on the number of the vertices. Without loss of generality we can take

w = 1. For n � 2, (a) and (b) imply that X = O.

Assume n � 3 and proceed by induction. The matrices A and X have the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 bT1 bT2 · · · bTk

b1 A1 O · · · O

b2 O A2 · · · O

...
...

...
. . .

...

bk O O · · · Ak

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 uT1 uT2 · · · uTk

u1 X11 X12 · · · X1k

u2 X21 X22 · · · X2k

...
...

...
. . .

...

uk Xk1 Xk1 · · · Xkk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so that each bi has exactly one nonzero entry and without loss of generality we take this to be in its

first position. Thus the Ai’s correspond to the Tv(w)’s.
The (2, 2)-block of [A, X] is

b1u
T
1 + [A1, X11] − u1b

T
1 = O.

Thus [A1, X11] = u1b
T
1 − b1u

T
1. Since b1 has just one nonzero entry, the nonzero entries of

u1b
T
1 − b1u

T
1 lie in its first row or first column. Thus [A1, X11](1) = O. So, A1 and X11 satisfy the

induction hypothesis, and thus X11 = O and u1b
T
1 − b1u

T
1 = O. Since the first row of u1b

T
1 − b1u

T
1 is

a nonzero multiple of uT1, we conclude that u1 is the zero vector. An analogous argument shows that

each of X22, X33, . . . , Xkk, u2, u3, . . . , uk is zero.
Now consider the (i + 1, j + 1)-block of [A, X], where i �= j. By (c), AiXij = XijAj . Since A has the

Duarte-property with respect to vertex 1, Ai and Aj have no common eigenvalue. So, by part (a) of

Lemma 1.1, Xij = O. Thus X = O. �

3. A polynomial map and its Jacobian matrix

The following will be the setting throughout the remainder of the paper. We fix T to be a tree with

vertices 1, 2, . . . , n and edges e1 = {i1, j1}, . . . , en−1 = {in−1, jn−1}. Let x1, x2, . . . , x2n−1 be 2n− 1

independent indeterminates, and set

x = (x1, x2, . . . , x2n−1).

Define M(x) to be the matrix with 2xi in the (i, i) position (i = 1, 2 . . . , n), xn+k in the (ik, jk) and

(jk, ik) positions (k = 1, 2, . . . , n − 1), and zeros elsewhere. Set N(x) = M(x)(n); that is, N(x) is

the principal submatrix obtained from M(x) by deleting its last row and column. We use M and N to

abbreviateM(x) and N(x)when convenient. We note we use 2xi for the (i, i)-position just tomake the

exposition a bit easier in the proof of the next lemma.

As an example, consider the tree T in Fig. 1. The adjacency matrix of the tree is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1

1 0 0 1 0

1 0 0 0 0

0 1 0 0 0

1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and thus

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x6 x7 0 x8

x6 x2 0 x9 0

x7 0 x3 0 0

0 x9 0 x4 0

x8 0 0 0 x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and N =

⎡⎢⎢⎢⎢⎢⎢⎣
x2 0 x9 0

0 x3 0 0

x9 0 x4 0

0 0 0 x5

⎤⎥⎥⎥⎥⎥⎥⎦ .

We now define two polynomial maps associated to M and N. Let g : R2n−1 → R2n−1 be the

polynomial map defined by

g(x) = (c0, c1, . . . , cn−1, d0, d1, . . . , dn−2) ,

where ci and di are the non-leading coefficients of the characteristic polynomials of M and N, respec-

tively. More precisely, xn + cn−1x
n−1 +· · ·+ c1x

1 + c0 and xn−1 + dn−1x
n−2 +· · ·+ d1x+ d0 are the

characteristic polynomials of M and N, respectively. Let f : R2n−1 → R2n−1 be the polynomial map

defined by

f (x) =
(
trM

2
,
trM2

4
, . . . ,

trMn

2n
,
tr N

2
,
tr N2

4
, . . . ,

tr Nn−1

2(n − 1)

)
. (6)

For example, if we let T be the following graph and construct M as described,

then f (x1, x2, x3, x4, x5) equals

f (x1, . . . , x5) =
(
x1 + x2 + x3, x

2
1 + 1

2
x24 + 1

2
x25 + x22 + x23,

4

3
x31 + x1x

2
4 + x1x

2
5 + x24x2 + x25x3 + 4

3
x32 + 4

3
x33, x2 + x3, x

2
2 + x23

)
.

In the next two results, we give a closed formula for the Jacobian matrix of the map f . By Newton’s

identities, there’s an infinitely differentiable, invertible h : R2n−1 → R2n−1 such that g ◦h = f . Thus,

the Jacobian matrix of f at a point x is nonsingular if and only if the Jacobian matrix of g at h(x) is

nonsingular. We denote a matrix (of size appropriate to the context) with a 1 in position (i, j) and 0s

elsewhere by Eij .

Lemma 3.1. Let (i, j) be a nonzero position of M with corresponding variable xt . Then

(a)
∂

∂xt

(
trMk

)
= 2kM

k−1
ij , and

(b)
∂

∂xt

(
tr Nk

)
=

⎧⎨⎩ 2kN
k−1
ij if neither i nor j is n

0 otherwise.

Proof. First, note that if i �= j. Then

∂

∂xt
M = Eij + Eji,

and for i = j
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∂

∂xt
M = 2Eii = Eij + Eji.

Thus, in either case,

∂

∂xt

(
tr(Mk)

)
=

k−1∑
�=0

tr

(
M� · ∂

∂xt
M · Mk−�−1

)
(by the chain rule)

=
k−1∑
�=0

tr

(
Mk−1 · ∂

∂t
M

)
(since tr(AB) = tr(BA) for any A and B)

= k tr
(
Mk−1(Eij + Eji)

)
= k

(
(Mk−1)ij + (Mk−1)ji

)
= 2k(Mk−1)ij. (since M is symmetric)

A similar argument works for N, provided we note that if i or j equals n then
∂

∂xt
N = 0. �

Given an (n − 1) × (n − 1) matrixW , we set

W̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
W

0

...

0

0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Given a matrix A = [ai,j] ∈ S(T) we denote by Jac(f )
A
the matrix obtained from Jac(f ) by evaluating

at (x1, . . . , x2n−1) where xk equals the corresponding entry of A for k = 1, 2, . . . , 2n− 1. Lemma 3.1

implies the following.

Corollary 3.2. Let T be a tree defined as above and A ∈ S(T). Then

Jac(f )
A

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ii1j1 · · · Iin−1jn−1
I11 · · · Inn

Ai1j1 · · · Ain−1jn−1
A11 · · · Ann

...
. . .

...
...

. . .
...

A
n−1
i1j1

· · · A
n−1
in−1jn−1

A
n−1
11 · · · An−1

nn

Ĩi1j1 · · · Ĩin−1jn−1
Ĩ11 · · · Ĩnn

B̃i1j1 · · · B̃in−1jn−1
B̃11 · · · B̃nn

...
. . .

...
...

. . .
...

B̃
n−2
i1j1

· · · B̃
n−2
in−1jn−1

B̃
n−2
11 · · · B̃n−2

nn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The aim now is to show that the above Jacobian matrix is nonsingular whenever A has the Duarte-

property with respect to n.

Theorem 3.3. Let A, B and the function f be defined as above. If A has the Duarte-property with respect to

vertex n, then Jac(f )
A

is nonsingular.

Proof. Note that Jac(f )
A

is nonsingular if and only if the only vector α = (α1, α2, . . . , α2n−1)
T such

that αT Jac(f )
A

= (0, . . . , 0) is the zero-vector.

Let Jac(f )k denote the kth row of Jac(f )
A

. So αT Jac(f )
A

= ∑2n−1
k=1 αi Jac(f )k . Thus, for � � n − 1,

the �-th entry in αT Jac(f )
A

is the (i�, j�)-entry of
∑n−1

k=0 αkA
k + ∑n−2

k=0 αn+kB̃
k , and for � > n− 1 the

�-th entry in αT Jac(f )
A

is the (� − n + 1, � − n + 1)-entry of
∑n−1

k=0 αkA
k + ∑n−2

k=0 αn+kB̃
k . Thus, we

have shown that αT Jac(f )
A

is the zero vector if and only if the matrix

X = α1I + α2A + · · · + αnA
n−1 + αn+1̃I + αn+2B̃

1 + · · · + α2n−1B̃
n−2

satisfies X ◦ A = O and X ◦ I = O.

Let p(x) = ∑n
i=1 αix

i−1 and q(x) = ∑2n−1
j=n+1 αjx

j−(n+1). Then X = p(A) + q̃(B) and to show that

Jac(A) is nonsingular it suffices to show that p(x) and q(x) are both zero polynomials.

Note that [A, p(A)] = O, hence [A, X] = [A, q̃(B)]. Also, note that since A(n) = B, [A, q̃(B)](n) = O.

Thus, [A, X](n) = O, and, by Lemma 2.2, we conclude that X = O. This implies that p(A) = −q̃(B).

Let Y := p(A) = −q̃(B), then AY = Ap(A). We claim that Y = O. Calculations yield:

Ap(A) = −A(̃q(B)) = −

⎡⎢⎢⎢⎢⎢⎢⎣
B

∗
∗
∗

∗ · · · ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
q(B)

0

...

0

0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−Bq(B)

0

...

0

∗ · · · ∗ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

and

p(A)A = −

⎡⎢⎢⎢⎢⎢⎢⎢⎣
q(B)

0

...

0

0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣
B

∗
...

∗
∗ · · · ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−q(B)B

∗
...

∗
0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Since Ap(A) = p(A)A, the last row of Ap(A) is zero and the last column of Ap(A) is zero. Thus, Ap(A) =
−q̃(B)̃B = p(A)̃B. That is,AY = YB̃. Hence, by (a) of Lemma1.1 either Y = O, orA and B̃ have a common

eigenvalue. If Y = Owe are done. Otherwise, since A and B have no common eigenvalue, A and B̃ both

have an eigenvalue 0 of multiplicity one. Suppose column j of Y is nonzero, and let Yj denote this

column. Note the last entry of Yj is 0. Since AY = O. By (b) of Lemma 1.1, Yj is a generalized eigenvector

of A corresponding to 0. Since A is symmetric, Yj is an eigenvector of A corresponding to 0. The form

of A and the fact that the last entry of Yj is 0 imply that the vector Yj(n) is a nonzero eigenvector of
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B corresponding to 0. This leads to the contradiction that A and B have a common eigenvalue. Thus

Y = O.

Since Y = O, p(A) = O and q(B) = O. Note that p(x) is a polynomial of degree at most n− 1. Since

A has n distinct eigenvalues, its minimal polynomial has degree n. Thus p(x) is the zero polynomial.

Similarly q(x) is the zero polynomial. So Jac(f )
A

is nonsingular. �

4. Main result

We use the Implicit Function Theorem, a version of whichwe state below for convenience, to prove

our main result (see [11]).

Theorem 4.1. Let F : Rs+r → Rs be a continuously differentiable function on an open subset U of Rs+r

defined by

F(x, y) = (F1(x, y), F2(x, y), . . . , Fs(x, y)),

where x = (x1, . . . , xs) ∈ Rs and y ∈ Rr . Let (a, b) be an element of U with a ∈ Rs and b ∈ Rr , and c

be an element of Rs such that F(a, b) = c. If⎡⎣∂Fi

∂xj (a,b)

⎤⎦
is nonsingular, then there exist an open neighborhood V containing a and an open neighborhood W con-

taining b such that V × W ⊆ U and for each y ∈ W there is an x ∈ V with F(x, y) = c

We are now ready to state and prove our main result.

Theorem 4.2. Let G be a connected graph with vertices 1, 2, . . . , n; i a vertex of G, and λ1, . . . , λn,

μ1, . . . , μn−1 real numbers satisfying (3). Then there is a symmetric matrix A =
[
aij

]
with graph G and

eigenvalues λ1, . . . , λn such that A(i) has eigenvalues μ1, . . . , μn−1.

Proof. Without loss of generality i = n. Let T be a spanning tree of G. Lemma 2.1 implies that there

exists an A ∈ S(T) such that A has eigenvalues λ1, . . . , λn, A(n) has eigenvalues μ1, . . . , μn−1, and

A has the Duarte-property with respect to n. By Theorem 3.3, the Jacobian matrix of the function f

defined in (6) evaluated at A is nonsingular. Thus, the Jacobian matrix of the function g defined in

section 3 at A is nonsingular.

Assume that G has r edges not in T and let y1, . . . , yr be r new variables other than x1, . . . , x2n−1.

We can extend the function g : R2n−1 → R2n−1 to a function F : R(2n−1)+r → R2n−1 by re-

placing each pair of entries of M (and N) corresponding to an edge of G not in T by one of the yi’s,

and let G(x, y) be the vector of nonleading coefficients of the characteristic polynomials of M and N.

Let c and d be the vectors of nonleading coefficients of the characteristic polynomials of A and A(n),
respectively.

Letting a be the assignment of the xj ’s corresponding to A we see that g(a, 0, 0, . . . , 0) = (c, d).
Since each of the first n − 1 entries of a is nonzero, there is an open neighborhood U of (a, 0, . . . , 0)
each of whose elements has no zeros in its first n − 1 entries. By Theorem 4.1, there is an open

neighborhood V of a and an open neighborhoodW of (0, 0, . . . , 0) such that V ×W ⊆ U and for each

y ∈ W there is an x ∈ V such that F(x, y) = (c, d). Take y to be a vector in W with no zero entries.

Then the (x, y) satisfying F(x, y) = (c, d) corresponds to a matrix Â ∈ S(G) such that the λ’s are the

eigenvalues of Â and the μ’s are the eigenvalues of Â(n). �

Here we give a simple example to illustrate how this method works. Suppose G = K3 and i = 1.

We want to construct a 3 × 3 matrix A with prescribed eigenvalues, say −10, 0 and 2 such that the
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eigenvalues of A(1) are prescribed and interlace those of A, say −1 and 1, and G(A) = K3. First, we

choose an spanning tree of G and apply Duarte’s method on it to realize the given spectral data.

The adjacency matrix of T is⎡⎢⎢⎢⎣
0 1 1

1 0 0

1 0 0

⎤⎥⎥⎥⎦ .

Let

Â =

⎡⎢⎢⎢⎣
a d e

d b 0

e 0 c

⎤⎥⎥⎥⎦ .

Since A(1) is going to be a diagonal matrix with eigenvalues −1, 1, we have b = −1, c = 1. Also,

we want the characteristic polynomial of A to satisfy

cA(λ) = (λ + 10)(λ)(λ − 2) = λ3 + 8λ2 − 20λ,

and

g(λ) = g1(λ)g2(λ) = (λ + 1)(λ − 1) = λ2 − 1.

Then

cA(λ)

g(λ)
= λ − (−8) −

(
27

2

1

λ + 1
+ 11

2

1

λ − 1

)
.

So, a = −8, d = 27
2
, and e = 11

2
. thus

A =

⎡⎢⎢⎢⎣
−8

√
27
2

√
11
2√

27
2

−1 0√
11
2

0 1

⎤⎥⎥⎥⎦
realizes the given spectral data, and has the Duarte property. M and N are described in the previous

example and the function f is given. We calculate the Jacobian of f

Jac(f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

x4 x5 2x1 2x2 2x3

2x1x4 + 2x2x4 2x1x5 + 2x3x5 4x21 + x24 + x25 4x22 + x24 4x23 + x25

0 0 0 1 1

0 0 0 2x2 2x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By direct calculation det(Jac(f )) = 4 x4x5x

2
3 − 8 x4x5x3x2 + 4 x5x4x

2
2, and
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det

(
Jac(f )

A

)
= 12

√
132.

So, the implicit function theorem tells us that if we change the zero entries to some small nonzero

number, there will be numbers close to the entries of A such that the new matrix constructed with

these new numbers realizes the given spectral data. For example let y = √
3/2, then the matrix

B =

⎡⎢⎢⎢⎣
−8 9+√

11

2
√

2

√
66−3

√
6

4

9+√
11

2
√

2
− 1

2

√
3

2√
66−3

√
6

4

√
3

2
1
2

⎤⎥⎥⎥⎦
has the eigenvalues −10, 0 and 2 and

B(1) =
⎡⎣− 1

2

√
3

2√
3

2
1
2

⎤⎦
has eigenvalues −1 and 1.

Given λ1 < λ2 < · · · < λn it is easy to find μ1, μ2, . . . , μn−1 such that (3) holds and hence

Theorem 4.2 immediately implies the following corollary. This extends Theorem 2 of [4] from trees to

connected graphs.

Corollary 4.3. Let G be a connected graph on n vertices and λ1, λ2, . . . , λn distinct real numbers. Then

there exists a matrix A ∈ S(G) whose spectrum is λ1, . . . , λn.
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