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Permanents were introduced by Cauchy and Binet in early 19th century. Permanents now

have applications in combinatorics, graph theory, probability theory, and computational

complexity theory.

The permanent of the n × n matrix A =
[
aij

]
is defined to be the sum of all diagonal

products of A, that is:

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the symmetric group of order n.

The term rank of A, denoted termrank(A), is the largest number of nonzero entries of A

with no two in the same row or column. The permanent rank of a matrix has been defined

by Yang Yu in his 1999 Ph.D. dissertation. The permanent rank of a matrix A, denoted

by perrank(A), is defined to be the size of a largest square sub-matrix of A with nonzero

permanent.

In this thesis we study some properties of the permanents and also permanent ranks of the

matrices, and related problems. In particular we characterize matrices with small permanent

ranks in order to study the following conjecture relating the perrank and the termrank:

Conjecture: For any matrix A,

perrank(A) ≥

⌈
termrank(A)

2

⌉
,

and for even termrank the equality holds if and only if up to equivalence and

reduction A =
⊕ 1 1

1 −1

.
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Chapter 1

Preface

This thesis concerns the matrix function known as the permanent and a concept known as

permanent rank. The term “permanent” seems to have originated in Cauchy’s memoir of

1812 [8], where he developed the theory of determinants as a special type of alternating

symmetric function that he distinguished from the ordinary symmetric functions [13]. The

permanent of the n by n matrix A =
[
aij

]
is defined to be [13] the sum of all diagonal

products of A, that is:

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where the Sn is the symmetric group of order n.

The permanent appears in many places in mathematics. As H.J. Ryser mentions in Com-

binatorial Mathematics [16], the permanent “appears repeatedly in the literature of combi-

natorics, in connection with certain enumeration and extremal problems.” For example it

can represent the number of the cycle covers of a directed graph, or the number of perfect

matchings in a bipartite graph. These topics will be discussed in Chapter 2. There are many

open problems related to the computing of perfect matchings [14].

Note that the determinant of the n by n matrix A = [aij] is defined as the sum of the all
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signed diagonal products of a matrix, namely,

det(A) =
∑
σ∈Sn

n∏
i=1

sgn(σ)aiσ(i).

Using Gaussian elimination, the determinant of an n by n matrix can be calculated in O(n3)

steps. In spite of its similarity to the determinant, the computation of the permanent seems

to be more computationally difficult to calculate. Indeed there is no known polynomial-

time algorithm for calculating the permanent of n× n (0, 1)-matrices [15]. Furthermore, L.

Valiant [21] proved that calculating the permanent has at least the difficulty of any problem

in the class of counting problems known as #P problems. Thus the class of #P problems

includes counting problems such as determining the number of subsets of a given set of

integers whose elements sums to 0, or the number of Hamiltonian cycles in a given weighted

graph which have cost less than a fixed constant k.

Knowing a little about permanents we are interested to study the permanent rank of matrices.

Recall that the rank of a matrix A is defined to be the maximum number of independent

rows or columns of the matrix [22], which is equivalent to the order of the largest square

sub-matrix of A with nonzero determinant [9]. Analogously, Yang Yu [24] in his PhD thesis

defines the permanent rank of a matrix A, denoted by perrank(A), to be the order of a

largest square sub-matrix of A with nonzero permanent. Despite the fact that no significant

work has been done on the permanent rank since 1999, it has some significant properties

and applications, and thus there is interest in better understanding the permanent rank.

Motivated by the Alon-Jaeger-Tarsi (AJT) conjecture, mentioned below, Yu proposed an-

other conjecture which states that for every n × n nonsingular matrix A over a given but

arbitrary field, perrank
(
A A

)
= n. As noted by Yu [23] this conjecture implies the AJT

Conjecture [2]:

If A is an n times n nonsingular matrix A over a field F with at least four

elements there is a nowhere-zero vector x, such that Ax is also nowhere-zero.

Here nowhere-zero means a vector such that none of the components are zero.

Having done some research on the AJT conjecture in my undergraduate studies, I decided
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to study the permanent rank of matrices and related problems for my master’s thesis.

Alon and Tarsi [2] proved the AJT Conjecture is true for any any field which is not of a

prime order, that is for |F| = pq, for some prime p and integer q ≥ 2. The problem is still

open for |F| = 5. The AJT Conjecture is connected to different areas in mathematics. For

example, Alon and Tarsi’s proof uses a combinatorial analog of Hilbert’s Nullstellensatz for

the existence of solutions to polynomial equations, which has been a useful tool in other

areas of mathematics [3]. Also, when F has nonzero characteristic, the AJT Conjecture is

known to be intimately related to the problem of covering Fn with 2n hyperplanes [10,17].

Not surprisingly, there is another conjecture which is implied by AJT Conjecture. It is

known as the 3-flow conjecture, which was purposed by W.T. Tutte in [20]. A graph is

k-edge-connected if it remains connected whenever any set of fewer than k edges is removed.

An m-flow is a weighting of edges of the graph over Zm, the integers modulo m, such that

the sum of input flows is equal to the sum of output flows at each node. An m-flow is a

nowhere-zero flow if none of the edges has zero weight. The conjecture asserts that every

4-edge-connected graph has a nowhere-zero 3-flow [19]. It should be mentioned that Jaeger

was able to prove that every 4-edge-connected graph has a 4-flow, but very little is known

about 3-flows. So, he actually made another conjecture which says there is an integer k

such that every k-edge-connected graph has a nowhere-zero 3-flow. This is known as the

weak 3-flow conjecture. Recently, C. Thomassen [18, 19] has proven the conjecture is true,

with k = 8. This problem has applications in coloring planar graphs (by duality) and graph

decompositions [18].
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Chapter 2

On the permanent rank of matrices

In this chapter the permanent rank of matrices will be studied, and a characterization of ma-

trices of small permanent rank will be presented. Then we will propose a conjecture relating

the permanent rank of matrices to their term rank, which suggests that the permanent rank

of a matrix, unlike its rank, is more related to the zero pattern of the matrix, rather than

the individual entires.

2.1 Motivation

In his 1998 PhD thesis Yang Yu [24] defined the perrank of a matrix A ∈ Mn(F) to be the

size of a largest sub-matrix of A with nonzero permanent. He proves two important results

for the perrank:

Proposition 2.1.1. Let A,B be n× n matrices over the field F. Then

a) perrank(A) ≥ rank(A)

2
. This is Theorem 2.1.2.

b) If A,B have no zero entries, and char(F) = 0, then
[
A B

]
has perrankn. This is an

immediate result of Lemma 7.7 of [24].

Notation: The are two ways to denote a sub-matrix of a matrix Am×n. Let α ⊂ {1, . . . ,m}
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and β ⊂ {1, . . . , n}. The sub-matrix of A obtained from rows of A indexed by α and columns

of A indexed by β is denoted by A[α; β]. The sub-matrix of A obtained by omitting those

rows of A indexed by α and columns of A indexed by β is denoted by A(α; β). If we want

to keep all the rows of A and omit just the columns of A which are indexed by β we use

the notation A(−; β). Similarly, when no columns of A are omitted the notation A(α;−) is

used. Similarly, A[α; ] is used to denote a sub-matrix of A keeping only those rows indexed

by α and all the columns, and A[ ; β] is the sub-matrix keeping all the rows and only the

columns indexed by β.

Yu uses some lemmas and provides a nice proof for part (a) of the Proposition 2.1.1 [23].

We also provide another proof which is more direct.

Theorem 2.1.2. Let Am×n be a rank r matrix. Then

perrank(A) ≥ rank(A)

2
.

Proof: Without loss of generality assume that m ≤ n, and rank(A) = m. Suppose

perrank(A) = k, and B is a k × k sub-matrix of A with nonzero permanent. Then by

permuting rows and columns we may take A to have the form

A =

 B X

Y Z

 .
Since perrank(A) = k, the permanent of each (k + 1) × (k + 1) sub-matrix of A is zero. In

particular per

 B X[ ; j]

Y [i; ] Zi,j

 = 0, for all i, j. Thus

Zi,j =

− per

 B X[ ; j]

Y [i; ] 0


per(B)

.

Define peradj(B) to be the k × k matrix whose (i, j)th entry is per(B(i, j)). Define B̂ as
peradj(B)

per(B)
. Hence the (i, j)th entry of −Y B̂X is

− (Y peradj(B)X)i,j
per(B)

=
−1

per(B)

[
Y [i; ]

] [
per(B(r, s))

] [
X[ ; j]

]
= Zi,j.

5



Therefore

A =


B X

Y −Y B̂X

 .

Note that Y is an (m − k) × k matrix. If m − k > k, then the rows of Y , and indeed the

rows of
[
Y −Y B̂X

]
are linearly dependent. But this contradicts that rank(A) = m. So,

m− k ≤ k, that is, k ≥ m/2.

Remark 2.1.3. If A is invertible and perrank(A) = n/2, the proof of Theorem 2.1.2 shows

that every k × k sub-matrix D of A with nonzero permanent is contained in a sub-matrix of

A with permanent rank n/2.

Yu’s work on the perrank was motivated by the following conjecture due to Alon, Jaeger

and Tarsi [2]:

Conjecture 2.1.4 (AJT Conjecture). If F is a field with |F| ≥ 4, A is a nonsingular matrix

over F, then there is a vector x such that both x and Ax have only nonzero entries.

Alon and Tarsi proved the conjecture is true for non-prime fields [2]. But even the case

|F| = 5 is still open. It is easy to see why it is true over the field of real numbers R. Take a

nowhere-zero vector x, such that Ax has minimum number of the zeros. If Ax has no zeros

then we are done. Otherwise, there exist a j such that (Ax)j = 0. A is invertible, so there is

an i such that aij 6= 0. Now, modify the choice of x by perturbing the ith entry by adding ε.

Let ei be the unit vector with a 1 on the ith positions and 0’s everywhere else. There exist

an ε such that x + εei remains nowhere-zero, and in addition, none of the nonzero entries

of Ax will turn to zero. Furthermore, since aij 6= 0, (A(x + εei))j is also nonzero. That is,

(A(x + εei)) has fewer zero entries than Ax. But x was chosen such that Ax has minimum

number of zeros. Hence, Ax cannot have zero entries.

Note that we use the assumption of A being invertible only to guarantee there is a nonzero

element in each row of A in the above proof. Hence, the conjecture over a complete field,
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like the real numbers, is true even if the condition of A being invertible is relaxed to A has

no zero rows.

Furthermore, in the above proof for the field of real numbers, we have heavily used the

properties of the real numbers (such as completeness). There is another easy proof, which

uses basic properties of vector spaces, that works for any infinite field. It is easily seen that

the union of two subspaces of a vector space is a subspace if and only if one of them is a

subset of the other one [6].

Proposition 2.1.5. Let K,L be subspaces of a vector space V . Then K ∪L is a subspace if

and only if K ⊆ L or L ⊆ K.

Proof: Suppose neither K is a subset of L nor L is a subset of K. Then there are vectors

x ∈ K \ L and y ∈ L \K. But then x + y is neither in K nor in L; that is x + y /∈ K ∪ L.

Therefore K ∪ L is not closed under addition, and hence is not a subspace.

Furthermore, one can argue that a vector space over an infinite field, cannot be written as a

finite union of its proper subspaces [12].

Proposition 2.1.6. Let V be a vector space over an infinite field F. Then V is not a union

of finitely many proper subspaces of itself.

Proof: Assume V =
⋃n
i=1 Vi, for some n ≥ 2, where Vi are proper subspaces of V , and

n is minimal, that is, Vi *
⋃
j 6=i Vj, for all i. Then there exist nonzero vectors u /∈ Vn

and v ∈ Vn \
⋃
i 6=n Vi. Let S = {v + tu : t ∈ F}. Then S ⊆ V is an infinite set. Since,

S ⊆ V =
⋃n
i=1 Vi, one of the Vi must contain infinitely many elements of S. Since u /∈ Vn,

Vn does not contain any element of S other than v. Suppose Vj (j 6= n) contains infinitely

many elements of S. Then, there are t1, t2 ∈ F (t1 6= t2), such that v + t1u, v + t2u ∈ Vj.

Thus v = (t2− t1)−1(t2(v+ t1u)− t1(v+ t2u)) ∈ Vj. That contradicts the choice of v. Hence

V cannot be the union of finitely many subspaces of itself.

We can use this fact to prove the AJT Conjecture for infinite fields.

Theorem 2.1.7. If F is an infinite field, and An×n is a nonsingular matrix over F, then

there is a vector x such that both x and Ax have only nonzero entries.

7



Proof: Let Vi = {v ∈ Fn : vi = 0}, and Wi = {v ∈ Fn : (Av)i = 0}, for i ∈ {1, . . . , n}.

Clearly Vi and Wi are subspaces of Fn. A vector x and Ax both have no zero entries if and

only if x /∈ Vi and x /∈ Wi, for all i; or equivalently if and only if x /∈ (
⋃n
i=1 Vi) ∪ (

⋃n
i=1Wi).

But F is an infinite field, and then by Proposition 2.1.6 such x exists, since

Fn \
(

(
n⋃
i=1

Vi) ∪ (
n⋃
i=1

Wi)
)
6= ∅.

Using this point of view, one can translate the AJT Conjecture to a problem of finding out

when an n-dimensional vector space is not covered by the hyperplanes Vi = {v ∈ Fn : vi = 0},

and Wi = {vFn : (Av)i = 0}, where A is an invertible matrix. In Lemma 19 of [17], Szegedy

gives the formal statement of this relation and provides a proof for it. Also, the authors of [1]

give a characterization for these spaces, when the size of the matrix is small with respect to

the size of the field.

Jeff Kahn, Yang Yu’s PhD supervisor, initiated the study of perrank and was led to the

following conjecture:

Conjecture 2.1.8. For any n× n nonsingular matrix A over any field,

perrank(
[
A A

]
) = n.

Conjecture 2.1.8 implies Conjecture 2.1.4, using the polynomial method of Alon and Tarsi [2].

In that method, Alon and Tarsi considered a polynomial which is the product of the entries

of x and Ax for A = [aij]. In other words

P (x1, x2, . . . , xn) =
n∏
i=1

xi

n∏
i=1

(
n∑
j=1

aijxj

)
.

The only step that is needed to complete the proof is that this polynomial is not constantly

zero. They prove this using a direct consequence of the combinatorial version of the Null-

stellensatz [3], which says for this polynomial it is enough to show that at least one of the

coefficients is not zero:

Theorem 2.1.9. Let F be an arbitrary field, and let f = f(x1, . . . , xn) be a polynomial in

F[x1, . . . , xn]. Suppose the degree of f is
∑n

i=1 ti, where each ti is a nonnegative integer, and
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suppose the coefficient of
∏n

i=1 x
ti in f is nonzero. Then, if S1, . . . , Sn are subsets of F with

|Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that f(s1, . . . , sn) 6= 0.

Alon and Tarsi use the fact that the coefficient of each
∏
xα, α = (α1, . . . , αn), is per(Aα),

where the columns of Aα are αi copies of the ith column of A. Then the permanent of A is

also one of the coefficients, particularly it is the coefficient of x1 . . . xn. On the other hand,

every Aα is an n× n sub-matrix of
[
A A · · · A

]
. That is, per(Aα) is nonzero for some

α, if and only if perrank
(
A A · · · A

)
= n. But Conjecture 2.1.8 asserts that it is

enough for perrank of
[
A A

]
to be n. In other words, if A is an AJT-matrix then the

coefficient of some xα is zero, for which, each αi ≤ 2. That clearly shows that Conjecture

2.1.8 implies AJT Conjecture.

Yang Yu [23] also generalized Conjecture 2.1.8 as:

Conjecture 2.1.10. If A,B are invertible n× n matrices over the field F, then there is an

n×n sub-matrix C of the n× 2n matrix
[
A B

]
so that perrank(C) = n. In other words,

perrank
(
A B

)
= n.

Over the field GF (3) Conjecture 2.1.10 is a consequence of the Alon-Tarsi Basis Conjecture,

and it also implies the weak 3-flow Conjecture [4, 17,19].

2.2 Characterization of real matrices with small perrank

Now that the perrank is defined and the importance of studying it is clear, we are interested

in better understanding it. One of the ways to serve this purpose is characterizing matrices

according to their perrank. We begin by describing some transformations that preserve the

perrank of matrices.

Proposition 2.2.1. For each matrix A, perrank(A) = perrank(AT ), where AT is the trans-

pose of A.

Proof: per(B) = per(BT ) for each square matrix B. Also, B is a sub-matrix of A if and
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only if BT is a sub-matrix of AT . So a square sub-matrix of A has nonzero permanent if and

only if its transpose has a nonzero permanent.

Proposition 2.2.2. The per is invariant under permutation of rows and columns.

Proof: Permuting rows changes the order of the summation in the definition of the per-

manent, and permuting columns reorders the product in that definition. So the permanent

remains untouched.

Corollary 2.2.3. The perrank is invariant under permutation of rows and columns.

Proposition 2.2.4. Scaling a row or column of a matrix by a nonzero number does not

change the perrank of the matrix.

Proof: Scaling a row or column multiplies the permanent of the matrix by that scalar. So a

sub-matrix of the original matrix has nonzero permanent if and only if the same sub-matrix

of the scaled matrix has a nonzero permanent.

Definition 2.2.5. Two matrices are equivalent if they can be obtained from each other

by permuting rows and columns, and taking transposes, or by scaling rows and columns by

nonzero elements to provide 1’s.

Proposition 2.2.6. Appending or removing zero rows or columns does not change the

perrank of matrix.

If an entry of a matrix is nonzero, one can scale the row or column containing that entry in

order to make that entry equal to 1. We often scale rows and columns to get 1’s in the first

row and the first column of the matrix. Using the transformations described above simplifies

the classification of matrices of specific perrank.

Definition 2.2.7. A matrix is said to be reduced if it is obtained from a matrix by deleting

all zero rows and zero columns.

For example, the reduced form of 
1 0 2 0

3 6 12 0

0 0 0 0


10



is 1 0 2

3 6 12

 .
Definition 2.2.8. The term rank of a matrix is the maximum number of nonzero en-

tries with no two in the same row or column. Equivalently, it is the minimum number of

rows and columns that cover all the nonzero entries of the matrix. (See Theorem 1.2.1 of [7])

Definition 2.2.9. A set of n entries of an n × n matrix with no two in the same row or

column is called a diagonal of the matrix.

Diagonals of an n×n matrix are in a one to one correspondence with the set of permutations

on n objects.

Definition 2.2.10. The product of all entries on a given diagonal of a matrix is called a

diagonal product of the matrix.

Proposition 2.2.11. For any matrix A, perrank(A) ≤ termrank(A).

Proof: If termrank(A) = k, then each diagonal of each (k + 1) × (k + 1) sub-matrix of A

has a zero. Thus each diagonal product of that sub-matrix is zero. That is, each term in the

permanent is zero, and consequently the permanent is zero. Hence perrank(A) ≤ k.

Proposition 2.2.12. The matrix A has perrank zero if and only if A = O.

Proof: If A is a zero matrix, then each sub-matrix of A of any order will have permanent zero,

so we say the permanent rank of A is zero. Conversely, if A has at least one nonzero entry, say

aij, then the permanent of the 1× 1 sub-matrix [aij] is nonzero, hence perrank(A) ≥ 1.

Theorem 2.2.13. The real reduced matrix A is of perrank 1, if and only if it is equivalent

to a matrix of form:

jTn =
[

1 · · · 1
]

, or k2 =

 1 1

1 −1

 .
Proof: Clearly jn, jTn and k2 have perrank 1. We determine when reduced m× n matrices,
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with m ≤ n, have perrank 1 for m = 1, 2, and then show for m ≥ 3 there are not any reduced

perrank 1 matrices.

Let A be a reduced 1×n matrix with at least one nonzero entry. It cannot have a zero entry,

since a zero entry means a zero column. So, A =
[

1 · · · 1
]
.

Now consider the case that m = 2. Since perrank(A) = 1 and A is reduced, A has no 0

entries, otherwise by scaling the first row and column and permuting we may assume that

A is equivalent to

 0 1

1 ?

, which has perrank 2. So, We may assume that A has the form

A =

 1 1 · · ·

1 a22 · · ·

, aij 6= 0. In order to have perrank(A) = 1, per(A[{1, 2}; {1, 2}]) =

a22 + 1 = 0, so a22 = −1. If n ≥ 3, then a3 3 = −1, but then per

 1 1

−1 −1

 6= 0. Thus

n = 2, hence A =

 1 1

1 −1

 up to equivalence, and clearly perrank(k2) = 1.

Let A be a reduced 3 × n matrix with perrank 1, and n ≥ 3. Every 2 × 2 sub-matrix of A

should also be of perrank at most one. It cannot be zero, because after permutation and

scaling, the matrix would be: A =


? 1 ? · · ·

1 0 0 · · ·

? 0 0 · · ·

, and then the upper left 2× 2 sub-matrix

will have perrank two. So, every 2 × 2 sub-matrix should have perrank exactly equal to

one. That is, up to equivalence they are k2 =

 1 1

1 −1

, specifically A[{1, 2}; {1, 2}] and

A[{1, 2}; {1, 3}]. Thus A =


1 1 1 · · ·

1 −1 −1 · · ·

? ? ? · · ·

. But then perrank(A[{1, 2}; {2, 3}]) = 2.

So there is no 3× n matrix (n ≥ 2) with perrank 1.

Here we introduce a technique, using algebraic geometry. In order to characterize matrices

with higher perrank, say k, we look at the all (k + 1) × (k + 1) sub-matrices of a generic

m× n matrix, and their permanents equal to zero.

12



Definition 2.2.14. Let F be a field. F [x1, x2, . . . , xn] is the ring of polynomials in n variables

x1, . . . , xn, with coefficients in F.

For example, let

A =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

 ,

where xij are the variables. Then the permanent of each (k + 1) × (k + 1) sub-matrix is a

multi-variable polynomial in F[x11, . . . , xmn], where F is a field. Using Gröbner bases, we are

able to solve some of these systems of polynomial equations and decide if there is a matrix

with the assumed perrank and size, and if there is, if we can characterize them. For example,

let A =

a b c

d e f

 be a generic matrix over F [a, b, c, d, e, f ]. Then the ideal generated by

the permanents of the 2× 2 sub-matrices of A is I = 〈ae+ bd, af + cd, bf + ce〉. A Gröbner

basis for I is B = {ae + bd, af + cd, bcd, bf + ce, cde}. This means perrank(A) ≤ 1 if and

only if ae + bd = 0, af + cd = 0, bcd = 0, bf + ce = 0, and cde = 0 simultaneously. In

particular, this calculation shows that if a 2× 3 matrix has perrank ≤ 1, then it must have

a zero entry. Without loss of generality, we may take c = 0. Then per(A) = 0 if and only if

ae + bd = 0, af = 0, and bf = 0. That is, either f = 0 or a = b = 0. This results in having

a zero column or a zero row, respectively.

Furthermore, in order to simplify the computations, if some x1j or xi1 is assumed to be

nonzero, it is set to be 1 in the generic matrix. For instance, for a 2× 3 matrix with no zero

entries, it is equivalent to A =

1 1 1

1 e f

. Therefore, the ideal generated by the permanents

of the 2× 2 sub-matrices of A is I = 〈e+ 1, f + 1, e+ f〉. And its Gröbner basis is B = {1}.

That means that I is the whole ring. Consequently, the polynomials in I do not have any

common zeros; specifically, the generators of I do not have any common zeros. That is not

all the permanents vanish simultaneously. Hence the permanent of at least of the 2 × 2

sub-matrices is nonzero. As a result, perrank(A) = 2.
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An immediate corollary of Hilbert’s weak Nullstellensatz [5] asserts that if F is an alge-

braically closed field, then an ideal I in F [x1, x2, . . . , xn] contains 1. That is, I is the whole

ring if and only if the polynomials in I do not have any common zeros in Fn. In order to

force some variables, say x1, . . . , xr, to be nonzero, we also add a polynomial of the form

x1 · . . . · xr · z − 1 to the ideal, for a dummy variable z. For example, the above example

can be looked as a matrix with no zero entries over F [a, b, c, d, e, f ], where a, b, c, d, e, f are

variables, and with the ideal I = 〈ae+ bd, af + cd, bf + ce, abcdefz − 1〉. Then the Gröbner

basis is {1}.

R. C. Laubenbacher and I. Swanson in their paper “Permanental Ideals” [11] define the

ideals generated by the permanents of k× k sub-matrices of a generic matrix, and call them

permanental ideals. Furthermore they give a primary decomposition of ideals generated by

the 2× 2 sub-permanents of a generic matrix.

Before proving the next theorem which characterizes the matrices with perrank 2, we need

some more tools.

Remark 2.2.15. It is easy to see that if B and C are square matrices, then

per

A B

C O

 = per(B) per(C).

Lemma 2.2.16.

perrank

A B

C O

 ≥ perrank(B) + perrank(C).

Proof: Note that here B and C are not necessarily square matrices. Suppose B′r×r and

C ′s×s are sub-matrices of B and C, respectively, with nonzero permanents. Let A′r×s be the

sub-matrix of A corresponding to the rows of B′ and columns of C ′. Then

per

A′ B′

C ′ O


(r+s)×(r+s)

= per(B′) per(C ′)

is nonzero, by Remark 2.2.15. Thus the perrank of the original matrix is at least r + s.

Lemma 2.2.17. Let A be a reduced m×n matrix with 3 ≤ m ≤ n. Assume that perrank(A) =

2, and that it has no r× s zero sub-matrix with r+ s = m. Then A does not have more than

14



one zero in any row and column.

Proof: Suppose to the contrary that A has two zeros in one row, so without loss of generality

A =


0 0 1

 .
Then the perrank of the lower left block must be 1. So by Theorem 2.2.13 without loss of

generality

A =



0 0 1

1 1

0 0
...

...

0 0


, A =



0 0 1

1 0
...

...

1 0

0 0
...

...

0 0


, or A =



0 0 1

1 1

1 −1

0 0
...

...

0 0


.

In the first case there is an (m − 1) × 2 zero sub-matrix; in the second case there is a zero

column; and in the third case there is an (m− 2)× 2 zero sub-matrix. Similarly, A cannot

have two zeros in a column, since m ≤ n.

Theorem 2.2.18. The real reduced matrix Am×n with m ≤ n has perrank 2 if and only if

one of the following occurs:

1. A is equivalent to

1 1

1 a

, with a 6= −1.

2. A is a 2× n matrix with n ≥ 3.

3. A has an r× s zero sub-matrix such that r+ s = m, and A up to equivalence is of one

of these forms:
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(a) 
? 1 · · · 1

1
... O

1


(b) 

a b 1 · · · 1

1 1 0 · · · 0

−1 1 0 · · · 0


3×n

; a, b ∈ R

(c) 
1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


4. 3 ≤ m ≤ n and A has no r × s zero sub-matrix such that r + s = m, and is equivalent

to a matrix of the following forms:

(a) A 3× 3 matrix with per(A) = 0.

(b)


0 1 1 1

1 a b c

1 −a −b −c

 ; abc 6= 0, ab+ ac+ bc = 0.

(c) A matrix of the form


1 1 1 1

1 a b c

1 d e f

, with a, b, c, d, e, f nonzero and described as
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below:

a = −(d+ 1)f 2 + (2e+ d2 + de− d+ 1)f + de+ d2 − e
f(d+ 1 + e− f) + 1

,

b = −df
2 + (2e+ d2 + de)f + de+ d2 + d

(f + 1)(d+ 1 + e− f)
,

c =
f(d− 1 + e+ f)

d+ 1 + e− f
,

d =
−e2f−e2−e+f+1−ef2+

√
(e+f)(e+1)(f+1)((f+1)e2+(f2−6f+1)e+f2+f)

2(ef+e+f)
,

or d =
e2f+e2−4 ef−3 e−3 f+ef2+f2+

√
(e+f)(e+1)(f+1)((f+1)e2+(f2−6f+1)e+f2+f)

2(ef+e+f)
.

Proof: Let A be a reduced m by n real matrix with perrank(A) = 2. Then clearly m,n ≥ 2.

Case 1: Suppose that m = 2.

If A has no zero entries, then without loss of generality, A has the form 1 1 · · · 1

1 a2 · · · an

 .
Since perrank(A) > 1, the characterization of perrank 1 matrices (Theorem 2.2.13) implies

that either n ≥ 3 or n = 2 and a2 6= −1, as desired.

Case 2: m,n ≥ 3.

Case 2a: A has at least two 0’s in the same row. Then we may assume that A has the form 0 0 1 · · · 1 0 · · · 0

B C

 .
By the perrank 1 characterization, up to equivalence, either B has a zero column, B has all

but one row that is 0’s, or B is equivalent to 1 1

1 −1

 .
17



The first case does not occur, since A is reduced. Suppose the second case occurs. Then up

to equivalence

A =


0 0 1 · · · 1 0 · · · 0

1 1 uT vT

O O W X

 .
Since perrank(A) ≤ 3, X = O, and A has just one 1 in the first row. It follows that A is

equivalent to a matrix of the form 
∗ 1 · · · 1

1
...

1

O

 .

Suppose the third case occurs. Then A is equivalent to a matrix of the form
1 1

1 −1
U

O V

 .
Then perrank(V ) = 1, V either has term rank 1 or is equivalent to

A =


1 1

1 −1
W

O
1 1

1 −1

 .

If the latter happens, let W be  a b

c d

 .
Then the permanents of the 3× 3 sub-matrices of A must be zero. Hence

per(A(4; 2)) = a+ b+ c+ d = 0,

per(A(4; 1)) = −a− b+ c+ d = 0,

per(A(3; 2)) = −a+ b− c+ d = 0,

per(A(3; 1)) = a− b− c+ d = 0.

18



Solving this system of 4 linear equations in 4 variables we get a = b = c = d = 0, thus

W = O.

If the former happens, then either V is a column of ones, or a row of ones. In the case of a

column of ones the matrix is equivalent to

1 1 a

1 −1 b

0 0 1
...

...
...

0 0 1


,

with a, b arbitrary.

In the case of a row of all ones, we show that if V has at least three 1’s, then W should be

zero. Let

A =


1 1 a b c · · ·

1 −1 d e f · · ·

0 0 1 1 1 · · ·

 .
By solving the equations perrank(A( ; {1, j})), for j = 3, 4, 5 we get b = −a, c = −a, and

c = −b. But that happens only if a = b = c = 0. Thus W = O. If V has at most two 1’s,

then A is equivalent to 
1 1 a −a

1 −1 b −b

0 0 1 1

 ; a, b arbitrary.

Case 2b: m,n ≥ 3, A has a 0, and no row or column of A has two 0s. Let m = n = 3, then it

is a 3× 3 matrix with per(A) = 0. So, its perrank is at most 2, and by the characterization

of matrices with permanent rank 1, Theorem 2.2.13, perrank(A) is exactly 2.

Now, suppose it is a 3× 4 matrix. It cannot have more than 3 zeros, each of which lie in a

different row and column, by Lemma 2.2.17. Let I be the ideal generated by the polynomials

from taking permanents of all the 3× 3 sub-matrices of a generic 3× 4 matrix A reduced as
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below:

A =


x1 1 1 1

1 x2 a b

1 c x3 d

 .
If A has 3 zeros, without loss of generality we can set x1 = x2 = x3 = 0. Then I =

〈ac + ad + bc, a + b + d, b + c + d, a + c, abcdz − 1〉. But then the Gröbner basis of I is

1. That means that I is the whole ring, and by the corollary of the weak Nullstellensatz,

these polynomials do not have any common zeros. So, construction of such a matrix is

impossible. In other words, if A is a 3× 4 matrix with 3 zeros, no two in a row or column,

then perrank(A) > 2.

Similarly, when it has two zeros, the ideal I generated by the permanents of all the 3 × 3

sub-matrices is the whole ring. For a 3× 4 matrix

A =


0 1 1 1

1 a b c

1 d e f


with 1 zero the ideal is:

I = 〈ae+ af + bd+ bf + cd+ ce, b+ c+ e+ f, a+ c+ d+ f, a+ b+ d+ e〉,

which has a Gröbner basis

B = {a+ d, b+ e, c+ f, de+ df + ef}.

The first three basis elements imply that d = −a, e = −b, f = −c. But then the last basis

element indicates to have ab+ ac+ bc = 0. So all the 3× 4 matrices with only one zero and

perrank 2 are of the form:
0 1 1 1

1 a b c

1 −a −b −c

 ; a, b, c 6= 0, ab+ ac+ bc = 0.
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This family of matrices can then be described by two parameters.

Case 2c: The same approach has been chosen in order to characterize the 3×4 matrices with

no zero entries, but the Gröbner basis for the ideal of these matrices is too big (with 132

polynomials). We were not able to solve the system of polynomial equations directly, but

using a shift in the variables we solved the equations and found a plausible solution. Define

the new variables to be

a′ = a+ 1, b′ = b+ 1, c′ = c+ 1,

d′ = d+ 1, e′ = e+ 1, f ′ = f + 1.

Then the ideal is:

I = 〈a′e′ + b′d′ − 2, a′f ′ + c′d′ − 2, b′f ′ + c′e′ − 2, a′ + b′ + c′ + d′ + e′ + f ′ − 6〉.

Solving this system of polynomial equations, all the parameters can be described in terms

of two parameters e and f :

a = −(d+ 1)f 2 + (2e+ d2 + de− d+ 1)f + de+ d2 − e
f(d+ 1 + e− f) + 1

,

b = −df
2 + (2e+ d2 + de)f + de+ d2 + d

(f + 1)(d+ 1 + e− f)
,

c =
f(d− 1 + e+ f)

d+ 1 + e− f
,

d =
−e2f−e2−e+f+1−ef2+

√
(e+f)(e+1)(f+1)((f+1)e2+(f2−6f+1)e+f2+f)

2(ef+e+f)
,

or d =
e2f+e2−4 ef−3 e−3 f+ef2+f2+

√
(e+f)(e+1)(f+1)((f+1)e2+(f2−6f+1)e+f2+f)

2(ef+e+f)
.

Now, let A be a 3 × 5 matrix. It must contain some zero entry, since the Gröbner basis of

the ideal generated by the permanents of its 3 × 3 sub-matrices is the whole ring. That is,
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it includes 1. So, suppose it has one zero entry:

A =


0 1 1 1 1

1 a b c d

1 e f g h

 .
Then the ideal I has a Gröbner basis

B = {a+e, b+f, c+g, d+h, ef −gh, eg−fh, eh+fh+gh, f 2h, fg+fh+gh, fh2, g2h, gh2}.

Solving the system of polynomial equations obtained from this basis implies

a = 0, b = 0, c = 0, d = −h, e = 0, f = 0, g = 0.

So, A will have some 2× 3 zero sub-matrix, which does not satisfy the assumed conditions.

This means that every 3×5, and hence any larger matrix with no r×s zero sub-matrix with

r + s = 3 has perrank > 2.

The remaining case is a 4× 4 matrix. Let

A =


x 1 1 1

1 a b c

1 d e f

1 g h k


The Gröbner basis of the ideal generated by the permanents of all the 3× 3 sub-matrices of

A is B = {a, b, c, d, e, f, g, h, k}, which means that it has a 3 × 3 zero sub-matrix. So, such

a 4× 4 matrix also does not exist.

2.3 Relation between termrank and perrank

In this section we purpose a conjecture, relating the term rank and the permanent rank of

matrices. Theorem 2.1.2 asserts that for any matrix A,

perrank(A) ≥ rank(A)

2
.
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Yang Yu [23] mentions that the inequality is tight for the family of matrices k2n, since

rank(k2n) = 2n, and perrank(k2n) = n. Note that he asserts up to equivalence these are the

only known matrices for which the perrank is exactly half of the rank. On the other hand

this instance of such matrices led us to a conjecture:

Conjecture 2.3.1 (Bryan Shader). For any matrix A,

perrank(A) ≥

⌈
termrank(A)

2

⌉
,

and for even termrank the equality holds if and only if up to equivalence and reduction

A =
⊕ 1 1

1 −1

 .

It can easily be seen that theorem 2.1.2 implies that Conjecture 2.3.1 is true for invertible

matrices. Studying this conjecture suggests that maybe the perrank of a matrix, unlike the

rank, is more related to the structure of the matrix, say the zero pattern, rather than the

individual entries of it.

2.3.1 Validity of the Conjecture for term ranks less than 4:

This section studies the validity of the Conjecture 2.3.1 for small term ranks. The validity

of the conjecture for termrank less than four is clear from the characterizations in Theorems

2.2.13 and 2.2.18.

Furthermore, we can look at the families of matrices which satisfy the equality in the conjec-

ture. Using the following lemmas we are able to extend a matrix that satisfies the equality

in Conjecture 2.3.1 to a family of matrices for which the inequality is sharp.
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Lemma 2.3.2. Let A be an m×n matrix, and x be a 1×n vector. Assume perrank(A) = k.

Then perrank

 A

x

 ≤ k + 1.

Proof: Since perrank(A) = k, permanent of each (k + 1) × (k + 1) sub-matrix of A is

zero. We show that the permanent of any (k + 2) × (k + 2) sub-matrix of

 A

x

 is zero,

which is equivalent to saying that its perrank is at most k + 1. If the sub-matrix does not

include any entries of x, then it is a sub-matrix of A, and by assumption its permanent is

zero. Suppose it includes some entries of x. By Laplace expansion [7] along the last row,

the permanent of this (k + 2) × (k + 2) sub-matrix is a linear combination of permanents

of (k + 1) × (k + 1) sub-matrices of A. By assumption, the permanents of all of those

(k+ 1)× (k+ 1) sub-matrices are zero, hence the permanent of the (k+ 2)× (k+ 2) is zero.

Hence perrank

 A

x

 ≤ k + 1.

Note that this lemma tells us that, like the rank of the matrix, adjoining a vector to a matrix

can increase its perrank by at most one.

Lemma 2.3.3. Let A be an m× n matrix and x be a vector. Then

perrank

 A O

1 x

 = perrank(A) + 1.

Proof: Clearly perrank
(
A O

)
= perrank(A). In one hand,

perrank

 A O

x 1

 ≥ perrank(A) + 1,

because if B is a maximal sub-matrix of A with nonzero permanent, then

 B O

x′ 1

, x′ the

sub-matrix of x corresponding to the columns of B, is a maximal sub-matrix of the original

matrix with nonzero permanent, using Laplace expansion on the last column. On the other
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hand, by Lemma 2.3.2

perrank

 A O

x 1

 ≤ perrank
(
A O

)
+ 1 = perrank(A) + 1.

Lemma 2.3.4. Let A be an n × n matrix, with odd n ≥ 4, such that for each i, up to

equivalence A(i, i) has the zero pattern:

A(i, i) =


J2 O

. . .

O J2

 ,
where J2’s are 2×2 matrices of all ones on the main diagonal of the matrix, zeros everywhere

else. Because A(1, 1) has the above form, then A should be of this form, where #’s denote a

deleted entry:

A =



# # #

# 1 1

# 1 1

1 1

1 1
. . .


.

Then considering A(2, 2) one can say that A should be of the following form:

A =



1 # 1

# # #

1 # 1

1 1

1 1
. . .


.
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And similarly looking at A(3, 3):

A =



1 1 #

1 1 #

# # # #

# 1 1

1 1
. . .


.

But then considering all these three cases, A(4, 4) will have the zero pattern:

A =



1 1 1

1 1 1

1 1 1

1 1

1 1
. . .


,

which contradicts the assumption.

Now that we have all the tools let’s see how we can extend a matrix which satisfies the

equality in the conjecture 2.3.1 to a family of sharp matrices. One of these matrices is

A =

 1 1

1 −1

 ,
which is a specific case of the Theorem 2.2.18, part 3.b. Let x = (x1, x2, 1), with x1, x2

arbitrary. Then

A′ =


1 1 0

1 −1 0

x1 x2 1

 .
We have termrank(A) = 3 and perrank(A) = 2, which means they satisfy the equality

perrank(A) =

⌈
termrank(A)

2

⌉
.
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Similarly, if A =
⊕

n−times k2, and x = (x1, x2, . . . , x2n, 1), with xi arbitrary; we have

termrank(A) = 2n and perrank(A) = n. Furthermore, for

A′ =



1 1

1 −1
O 0

. . .
...

O
1 1

1 −1
0

x1 · · · x2n 1


,

termrank(A′) = 2n + 1 and perrank(A′) = n + 1, which satisfy the equality. The above

process suggests an inductive procedure that we were not able to complete, but here are the

steps:

If termrank(A) = 1, then it has at least one nonzero element, and that implies perrank(A) ≥

1. The cases t = 2, 3 were also checked above.

Let termrank(A) = t ≥ 4, and suppose the conjecture is true for all the matrices with

termrank at most t− 1.

Definition 2.3.5. A collection of e rows and f columns of Am×n, say E and F respectively,

such that A(E;F ) = O is called a covering of rows and columns of A. If e+ f is as small as

possible, then it is called a minimum covering. If e, f > 0 it is said to be a mixed covering.

If f = 0, it is a row covering, and if e = 0, then it’s called a column covering. Clearly if A

has no zero row or columns and m < n, then there is not a minimum column covering.

Theorem 1.2.1 of [7] asserts that if there is a minimum covering of e rows and f columns for

a matrix, then termrank(A) = e+ f .

Let Am×n, with m ≤ n, have a minimum mixed covering of rows and columns.

A =


? Be×(n−f)

C(m−e)×f O

 ; e+ f = t and e, f 6= 0.
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Since this is a minimum covering, then termrank(A) = t, and termrank(B) = e and

termrank(C) = f . By induction hypothesis perrank(B) ≥
⌈e

2

⌉
and perrank(C) ≥

⌈f
2

⌉
.

Finally, by Lemma 2.2.16 perrank(A) ≥
⌈e

2

⌉
+
⌈f

2

⌉
≥
⌈e+ f

2

⌉
=
⌈ t

2

⌉
.

Now suppose that A does not have a minimum mixed covering, that is it has a minimum row

covering, and assume it is not a square matrix. Then it has t independent nonzero elements.

Permute rows and columns such that they are placed in (i, i) entries of the matrix. If one

of the columns which does not contain these elements is omitted, the matrix still will have

a minimum covering of t rows. Deleting all such columns we will end up with a t× t square

matrix. So, if we prove that this square matrix satisfies the inequality, it also proves that

the original rectangular matrix satisfies the inequality.

Here we consider two cases, t is even and t is odd. First assume that t is odd, so t =

2k + 1 for some positive integer k. Then by induction hypothesis perrank(A(t; t)) ≥ k, and

perrank(A(t, t)) = k if and only if

A(t, t) =
⊕

k2 =



1 1 0 0

−1 1 0 0
. . .

0 0 1 1

0 0 −1 1


.

But that should be true for any A(i; i), which is impossible for t ≥ 3, because of Lemma

2.3.4 below. So, perrank(A(t; t)) ≥ k + 1, that is perrank(A) ≥ k + 1.

Now consider that case that t is even, that is t = 2k + 2 for some positive integer k.

Every matrix of termrank 2k + 2 has a sub-matrix of termrank 2k + 1, which means by

induction hypothesis perrank of that sub-matrix is at least
⌈2k + 1

2

⌉
= k + 1. That is,

perrank(A) ≥ k + 1 =
⌈ t

2

⌉
.

The only remaining step that we were not yet able to complete is to prove the case of
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equality for matrices with even termrank. We have done this for termrank 2 in 2.2.13, and

for termrank 4 in 2.2.18.

These theorems and lemmas can be used as tools for further work on characterizing matrices

with a fixed permanent rank, and also to study the conjectures mentioned in this chapter.

We hope that we can extend these results in the future.
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Glossary

Sn the symmetric group of degree n, that is the set of all the permutations of the n symbols.

1, 30

#P problem The class of functions that can be computed by counting Turing Machines of

polynomial time complexity [21]. 2

AJT-matrix A matrix A over a field F such that there exists a vector x over F such that

both x and Ax are nowhere-zero [1]. 9

bipartite graph A graph whose vertices can be divided into two disjoint sets V1 and V2

such that every edge connects a vertex in V1 to one in V2; that is, V1 and V2 are

independent sets. 1

cycle A closed path with no repeated vertices. 31

cycle cover A set of disjoint cycles which are subgraphs of a graph and contain all the

vertices of the graph. 1

determinant Let A = (aij) be an n×n matrix over any commutative ring, the determinant

of A, written det(A), is defined by

det(A) =
∑
σ∈Sn

sign(σ)
n∏
i=1

aiσ(i),

Where Sn is the symmetric group of order n. 1, 2, 32
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diagonal Let A = (aij) be an m × n matrix over any commutative ring, m ≤ n, for any

σ ∈ Sn, the sequence (a1σ(1), . . . , amσ(m)) is called a diagonal of A. 11, 25

diagonal product Let A = (aij) be an m × n matrix over any commutative ring, m ≤ n,

for any σ ∈ Sn, the product
∏m

i=1 aiσ(i) is called a diagonal product of A. 11

directed graph A graph whose edges are ordered pairs of the vertices. 1

graph An ordered pair G = (V,E) of a set V of vertices and a set E of edges, which are

2-element subsets of V . 30, 31

Hamiltonian cycle A cycle through a graph that visits each vertex exactly once. 2

matching A set of edges of a graph without common vertices. 31

nowhere-zero A vector with no zero entries. 2, 3, 6, 30

path A sequence of vertices of a graph such that from each of its vertices there is an edge

to the next vertex in the sequence. 30

perfect matching A matching which saturates all the vertices of the graph. 1

permanent Let A = (aij) be an m × n matrix over any commutative ring, m ≤ n, the

permanent of A, written per(A), is defined by

per(A) =
∑
σ

m∏
i=1

aiσ(i),

where the summation extends over all one-to-one functions from {1, . . . ,m} to {1, . . . , n}.

The permanent of A is the sum of all diagonal products of A. For n ≤ m the permanent

of A is defined to be equal to the permanent of AT [13]. 1, 2, 4, 31

permanent rank the size of a largest square sub-matrix of the matrix with nonzero per-

manent. 1, 2, 4, 22
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rank The maximum number of linearly independent column vectors of the matrix, which is

equal to the maximum number of linearly independent row vectors of it. Equivalently,

it is the size of a largest square sub-matrix of the matrix with nonzero determinant. 2

sub-matrix A matrix which is obtained by omitting some rows and/or columns of the

original matrix. There are two ways to denote such a matrix. Let Am×n be a matrix,

and α ⊂ {1, 2, . . . ,m}, β ⊂ {1, 2, . . . , n}. Then A[α; β] is the matrix obtained by

keeping the rows of α and columns of β, and deleting the other rows and columns.

Also, A(α; β) is the matrix obtained by omitting the rows of α and columns of β, and

keeping the rest of rows and columns, which is the complementary matrix of A[α; β].

2, 4

term rank Let Am×n be a matrix. The term rank of A is the maximum number of the

nonzero entries of A no two in the same row or column. Equivalently, it is the minimum

number of the lines (rows and columns) in A that contain all of the nonzero entries in

A. 4, 11, 22

transpose If Am×n = [aij], then transpose of A is defined to be ATn×m := [aji]. 9, 10
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