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Abstract

A matrix A over a field F is said to be an AJT matrix if there exists a vector x over F such that both x
and Ax have no zero component. The Alon–Jaeger–Tarsi (AJT) conjecture states that if F is a finite field,
with |F | ≥ 4, and A is an element of GLn(F), then A is an AJT matrix. In this paper we prove that every
nonzero matrix over a field F , with |F | ≥ 3, is similar to an AJT matrix. Let AJTn(q) denote the set of
n × n, invertible, AJT matrices over a field with q elements. It is shown that the following are equivalent
for q ≥ 3: (i) AJTn(q)= GLn(q); (ii) every 2n × n matrix of the form (A|B)t has a nowhere-zero vector
in its image, where A, B are n × n, invertible, upper and lower triangular matrices, respectively; and (iii)
AJTn(q) forms a semigroup.
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1. Introduction

A matrix A over a field F is said to be an AJT matrix if there exists a vector x over
F such that both x and Ax are nowhere-zero vectors (that is, each component of them
is nonzero). The Alon–Jaeger–Tarsi conjecture (AJT conjecture) states that if F is a
finite field, with |F | ≥ 4, and A is an element of GLn(F), then A is an AJT matrix.
In [2] the conjecture was proved for |F | = pk , where p is a prime number and k ≥ 2
is an integer. In [5] it was shown that the conjecture is true for |F | ≥ n ≥ 4.

Our main result is that every nonzero matrix over a field F , with |F | ≥ 3, is
similar to an AJT matrix. We also provide necessary and sufficient conditions for
a matrix to be an AJT matrix. Throughout this paper, Mm,n(F) denotes the set of
all m × n matrices over the field F , and Fn indicates Mn,1(F). Also, ker(A) and
im(A) denote the kernel and the image of the linear transformation corresponding
to the matrix A, respectively. A matrix A = (ai j ) is an upper Hessenberg matrix if
ai j = 0 for i > j + 1. In that case, At is called a lower Hessenberg matrix. An n × n
matrix C = (ci j ) is a circulant matrix if ci j = ci+1, j+1, where the subscripts are taken
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modulo n. Let AJTn(q) denote the set of n × n, invertible, AJT matrices over a field
with q elements. A natural question arises here: which classic subgroups of GLn(q)
are subsets of AJTn(q)? It is easily seen that the set of invertible circulant matrices is
a subset of AJTn(q).

The permanent of an n × n matrix A = (ai j ) is defined as

Per(A)=
∑
σ∈Sn

n∏
i=1

ai,σ (i).

The sum here extends over all elements σ of the symmetric group Sn .

2. Every nonzero square matrix is similar to an AJT matrix

In this section we prove that under similarity the AJT conjecture is true.

THEOREM 1. Every nonzero matrix A ∈ Mn(F), with |F | ≥ 3, is similar to an AJT
matrix.

PROOF. Suppose that A is in its rational canonical form, and without loss of generality
assume that its m × m zero block, if it exists, is located in its upper left corner. Any
nonzero block of A has the form

B =


0 0 · · · 0 b1
1 0 · · · 0 b2

0 1 · · ·
...

...
...

...
. . . 0 bk−1

0 0 · · · 1 bk

.

We consider the following cases.

(1) The last column of B contains a nonzero element, say b j . Since B is similar to
its transpose Bt

[4, Section 3.2.3], we can assign a proper coefficient to the j th
row of B and add it to the rest of the rows to obtain a nowhere-zero vector.

(2) The last column of B is zero. Then B is similar to

C =


1 −1 · · · 0 0
1 −1 · · · 0 0

0 1 · · ·
...

...
...

...
. . . 0 0

0 0 · · · 1 0

.

That is, C = PBP−1, where P is the matrix that when applied to B from the left
replaces the first row of B with the sum of its first and second rows, and leaves
the other rows unaltered. It is easily seen that C is an AJT matrix.

Now, since A is assumed to be block diagonal, we can replace all nonzero blocks on the
diagonal of A with their similar AJT versions given in (1) and (2) above, and call the
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matrix thus obtained Ã. Consider a nonzero row of Ã, say the ith row. Let Ã j denote
the j th row of Ã. Assume that Q is the invertible matrix such that (Q Ã) j = Ã j + Ãi ,
for every j , 1≤ j ≤ m, and (Q Ã)k = Ãk , for any k, m + 1≤ k ≤ n. It is not hard to
see that Q Ã = Q ÃQ−1. Now, since every nonzero block of Ã is an AJT matrix we
conclude that Q ÃQ−1 is an AJT matrix. 2

REMARK 2. A similar proof shows that every nonzero matrix A ∈ Mn(F), with
|F | ≥ 5, is similar to a matrix B with the property that for any u, v ∈ Fn , there exists
x ∈ Fn such that x − u and Bx − v are nowhere-zero vectors.

3. A generalization of AJT matrices

The following theorem was proved in [5]. The proof is rather long. Theorem 3
generalizes this result and provides a short and simple proof for it.

THEOREM. Suppose that A ∈ Mm,n(F), with |F | = q, and q > m + 1. There is a
vector x ∈ Fn such that neither x nor Ax has any zero entries if and only if no row
of A is zero.

THEOREM 3. Let A ∈ Mm,n(F), with |F |> m + 1. Then for any u ∈ Fn and v ∈ Fm

there exists x ∈ Fn such that x − u and Ax − v are nowhere-zero vectors if and only
if A has no zero row.

PROOF. One direction is clear. For the other direction, let S be a finite subset of F
with at least m + 2 elements, containing all entries of u. Hence, there are (|S| − 1)n

vectors x in Sn such that x − u is a nowhere-zero vector, and since A has no zero
row, the product of at most (|S| − 1)n−1 of these vectors and the ith row of A is equal
to the ith entry of v, 1≤ i ≤ m. Obviously, (|S| − 1)n > m(|S| − 1)n−1 implies the
existence of x ∈ Fn such that x − u and Ax − v are nowhere-zero vectors. 2

REMARK 4. The previous theorem does not hold for |F | = m + 1. For example,
consider the m × 2 matrix

B =

 f1 1
...

...

fm 1

,
where F = {0, f1, . . . , fm} and u, v are zero vectors. Then for any nowhere-zero
vector x = (x1, x2)

t , Bx has a zero component, since the equation x1z + x2 = 0 in z,
takes a nonzero solution in F . For |F | = m + 1, the mean of the number of zero entries
of Ax , say M , is less than or equal to (mmn−1)/mn

= 1, where the mean is taken over
all nowhere-zero vectors x . If the number of nonzero entries in at least one row of A is
not equal to 2, then M < 1 and A is an AJT matrix. If M = 1 and A has at least three
nonzero columns, then there exists a nowhere-zero vector x such that Ax has more
than one zero. Hence, there exists a nowhere-zero vector y such that Ay has less than
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one zero, that is, A is an AJT matrix. Hence, if the number of nonzero entries in at least
one row of A is not equal to two, or if A has at least three nonzero columns, then A is
an AJT matrix over a field F of size m + 1. Thus, all m × n matrices with no zero row
which are not AJT matrices over a field F of size m + 1 are obtained from B by adding
zero columns to it, permuting, or multiplying its rows by nonzero scalars from F .
This too follows from the probabilistic method used in [3, Proof of Theorem 1].

COROLLARY 5. Let F be an infinite field and A ∈ Mm,n(F). Then for any u ∈ Fn ,
ker(A) contains a vector x such that x − u is a nowhere-zero vector if and only if
the row space of A contains no vector ei = (0, 0, . . . , 1, 0, . . . , 0), where the ith
component is 1.

PROOF. One direction is obvious. For the other direction, note that the row space
of A has no ei if and only if the reduced row echelon matrix of A, say R, has
no vector ei as one of its rows. Let R f be the submatrix of R obtained from the
columns corresponding to the free variables of Rx = 0 with the possible zero rows
removed. Now, according to Theorem 3, there exist x f and y f such that x f − u f
and y f − (−u p) are nowhere-zero vectors and R f x f = y f , where u f , u p is the
partitioning of u into components corresponding to the free and pivot variables of
Rx = 0, respectively. It suffices to take −y f for the pivot variables of Rx = 0, and
this determines a vector x in the null space of R with the desired property. 2

REMARK 6. The proof of Corollary 5 gives a necessary and sufficient condition for
the kernel of a matrix to contain a nowhere-zero vector over an arbitrary field: ker(A)
contains a nowhere-zero vector if and only if R f is an AJT matrix.

Now, we state the following trivial but useful lemma.

LEMMA 7. Given u, v ∈ Fn and a triangular matrix A ∈ GLn(F), with |F | ≥ 3, there
exists x ∈ Fn such that x − u and Ax − v are nowhere-zero vectors.

PROOF. Since Per(A)= det(A) 6= 0, we can apply [2, Proposition 2]. 2

REMARK 8. Clearly, for every permutation matrix P and Q, A is an AJT matrix if and
only if PAQ is an AJT matrix. More generally, for any u, v ∈ Fn , there exists x ∈ Fn

such that x − u and Ax − v are nowhere-zero vectors if and only if, for any u, v ∈ Fn ,
there exists y ∈ Fn such that y − u and PAQy − v are nowhere-zero vectors. So, using
Lemma 7, we can find other families of invertible AJT matrices by permuting rows and
columns.

Let us generalize Lemma 7 in the following theorem which immediately implies
that every upper or lower Hessenberg matrix H ∈ GLn(F), with |F | ≥ 4, is an AJT
matrix.

THEOREM 9. Let A = (ai j ) be a matrix in GLn(F), with |F | ≥ 4, such that ai j = 0
for i > j + 2 (or similarly ai j = 0 for j > i + 2). Then, given u, v ∈ Fn , there exists
x ∈ Fn such that x − u and Ax − v are nowhere-zero vectors.
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PROOF. The two cases |F | = 4 and n < 4 follow from [2, Proposition 1] and
Theorem 3, respectively. So, we may suppose that |F | ≥ 5 and n ≥ 4. According
to Remark 8, we may rearrange the rows of A to obtain a matrix R such that for
each k, 1≤ k ≤ n − 1, the nonzero leading entry of the (k + 1)th row of R is in the
same column as the nonzero leading entry of its kth row or in a column to the right
of it and prove the theorem for R. Note that ri,i−2 = ri,i−1 = 0 implies that ri i 6= 0.
Otherwise,

det(R)= det
(

B C
0 D

)
= 0,

where B is an (i − 1)× (i − 1) matrix, and D is an (n − i + 1)× (n − i + 1) matrix
whose first column is zero, contradicting our hypothesis that A is invertible. Thus, each
column of R contains at most three nonzero leading entries. This fact, together with
|F | ≥ 5, enables us to make a vector x = (x1, . . . , xn)

t such that x − u and Rx − v
are nowhere-zero vectors by assigning a proper value to xk and finding proper values
for xk−1 and xk−2, where k = n, n − 1, . . . , 3. 2

Our next two theorems show how the problem of the existence of a nowhere-zero
vector in the image of a mapping is related to the problem of determining whether a
given matrix is an AJT matrix.

THEOREM 10. Suppose that A ∈ Mm,n(F) has no zero row and rank(A)= r < m.
Without loss of generality, assume that the first r rows of A are linearly independent,
and Ai = bi−r,1 A1 + · · · + bi−r,r Ar , i = r + 1, . . . , m, where Ak denotes the kth
row of A. Then im(A) contains a nowhere-zero vector if and only if B =
(bi j )r+1≤i≤m,1≤ j≤r is an AJT matrix.

PROOF. Clearly, B has no zero row. Assume that im(A) contains a nowhere-zero
vector, that is, there exists x ∈ Fn such that Ax is a nowhere-zero vector. Let
z = (A1x, . . . , Ar x)t . Then Bz is a nowhere-zero vector, and therefore B is an
AJT matrix. Now, suppose that B is an AJT matrix, that is, there exists y ∈ Fr

such that y and By are nowhere-zero vectors. Let A = (C |D)t be a partitioning
of A into C ∈ Mr,n(F) and D ∈ Mm−r,n(F). Then τC : Fn

→ Fr , the linear operator
corresponding to C , is surjective. Therefore, there exists x ∈ Fn such that τC (x)= y.
Clearly, Dx and therefore Ax are nowhere-zero vectors too. 2

COROLLARY 11. Suppose that A ∈ Mm,n(F) has no zero row and that rank(A)= r .
If |F |> m − r + 1, then im(A) contains a nowhere-zero vector.

PROOF. Apply Theorem 3 to the matrix B in the above theorem. 2

REMARK 12. Suppose that A ∈ Mm,n(F) and rank(A)= m. Clearly, im(A) contains
a nowhere-zero vector. Moreover, if F = GF(pα), α > 1, then according to [2] A is
an AJT matrix, since it can be extended to an invertible matrix by adding n − m rows
to it.
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It is well known that any matrix A has a PLU decomposition [4], that is, there exist
a lower triangular matrix L , an upper triangular matrix U , one of which is invertible,
and a permutation matrix P , such that A = PLU. Hence, according to Remark 8, we
may restrict our attention to LU decomposable matrices only.

THEOREM 13. The following are equivalent for q ≥ 3.

(1) AJTn(q)= GLn(q).
(2) Every 2n × n matrix of the form (A|B)t has a nowhere-zero vector in its

image, where A, B are n × n, invertible, upper and lower triangular matrices,
respectively.

(3) AJTn(q) is closed under multiplication of matrices, that is, it forms a semigroup.

PROOF. (1)⇒ (2). Let M = B A−1. By assumption, there are nowhere-zero vectors
x, y such that Mx = y. Now, if z = A−1x , then (A|B)t z = (x |y)t .
(2)⇒ (1). Let M ∈ GLn(q). There exists a permutation matrix P such that

PM = LU , where L and U are lower and upper triangular matrices, respectively. By
considering the matrix (U−1

|L)t and using the assumption, we are done.
On the other hand, (1)⇔ (3), because of Lemma 7 and the PLU factorization of

matrices. 2

COROLLARY 14. Let A = LU be an LU decomposition for A ∈ GLn(F), with
|F | ≥ 4, such that the last column of U−1 and the first column of L are nowhere-zero
vectors. Then A is an AJT matrix.

PROOF. Set z = (1, 0, . . . , 0, c)t in the proof of Theorem 13 for a proper c ∈ F . 2

4. Nowhere-zero vectors in the kernel or the image of linear transformations

In this section we provide some criteria for the existence of nowhere-zero vectors
in the null space and the image of a linear transformation.

THEOREM 15. Let A ∈ Mm,n(F) be a matrix with no zero row and with at most k
nonzero entries in each column. If |F |> k + 1, then A is an AJT matrix, and if
|F | = k + 1, then im(A) contains a nowhere-zero vector.

PROOF. Without loss of generality, assume that A has no zero columns. The proof
is by induction on n. For n = 1 the assertion is obvious. Suppose that the statement
holds for all such A with less than n columns, n > 1. Let Ã be the matrix obtained by
omitting the last column of A with its possible zero rows removed. By the induction
hypothesis, there exists an x ∈ Fn−1 such that Ãx has the desired property. It is not
hard to choose a ∈ F such that Ay has the same property as Ã, where y = (x |a)t . 2

REMARK 16. In [1] it is shown that every (0, 1) matrix with at most two ones in each
of its columns and no zero row is an AJT matrix over F , for |F | ≥ 3.

THEOREM 17. Let A ∈ Mm,n(F) be a (0, 1) matrix with at most three ones in each
of its columns and no zero row. Then im(A) contains a nowhere-zero vector over F,
|F | ≥ 3.
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PROOF. We apply induction on n. For n = 1 the assertion is obvious. Let n > 1 and
let Ã be the matrix obtained from omitting a column of A. Now, we consider the
following two cases.

(1) Ã has no zero row. Then, by the induction hypothesis, Ãx is a nowhere-zero
vector for some x ∈ Fn−1. Hence, if we assume without loss of generality that
the last column of A is removed, then A(x |0)t will be a nowhere-zero vector.

(2) Ã has at least one zero row, for every choice of the columns of A. Then, by a
permutation of the rows, A will be in the form (In|B)t , where B is a matrix with
at most two ones in each of its columns, and hence by Remark 16 an AJT matrix.
Clearly, A is also an AJT matrix. 2

REMARK 18. Let F be a finite field of characteristic 2. Then there exists a (0, 1)
matrix with no zero row and |F | − 1 ones in each of its columns which is not an AJT
matrix over F . Hence, we cannot generalize Remark 16 in this sense. Here, we give
an example of such a matrix for F = GF(4):

A =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

.

Clearly, the condition that the nowhere-zero vector x has distinct elements is necessary
for Ax to be a nowhere-zero vector. Hence, A is not an AJT matrix over GF(4), since
this field has only three nonzero members. Generally, assuming that F is a finite field
with char(F)= 2, the same method may be used to construct a matrix with

(
|F |
2

)
rows

and |F | columns that is not an AJT matrix over F .

THEOREM 19.

(1) Suppose that any matrix with at most k nonzero entries in each of its columns
and no zero row is an AJT matrix over a field of size k + 1. Let A be a matrix
with at most k + 1 nonzero entries in each of its columns and no zero row. Then
im(A) contains a nowhere-zero vector over a field of size k + 1.

(2) Suppose that for any matrix A with at most l nonzero entries in each of its
columns and no zero row over a field of size l, im(A) contains a nowhere-zero
vector. Then any matrix B with at most l − 1 nonzero entries in each of its
columns and no zero row is an AJT matrix over a field of size l.

PROOF. (1) The proof is similar to that of Theorem 17 and hence omitted.
(2) Suppose that B is an m × n matrix and define A = (In|B)t . Then im(A) contains
a nowhere-zero vector by hypothesis, and hence B is an AJT matrix. 2
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