Stat 171 - Worksheet for Section 4.1

Name:		
-------	--	--

- 1. Decide whether the random variable x is discrete or continuous. Determine whether x represents counted data or measured data, make a conclusion, and explain your reasoning.
 - x =The number of Fortune 500 companies that lost money in the previous year.
 - x =The volume of gasoline in a 21-gallon tank.
 - x =Speed of a rocket.
 - x = The number of calves born on a farm in one year.
- 2. A Company tracks the number of sales new employees make each day during a 100-day probationary period. The results for one new employee are shown. construct and graph a probability distribution by
 - Finding the probability of each outcome,
 - Organizing the probabilities in a probability distribution, and
 - Graphing the probability distribution using a histogram.

x	0	1	2	3	4	5	6	7
_ , ,								
P(x)								

Sales per	Number of
day, x	days, f
0	16
1	19
2	15
3	21
4	9
5	10
6	8
7	2

3. Verify that the above distribution is a probability distribution.

4. Determine whether the followings are probability distributions. Explain.

x	5	6	7	8
P(x)	0.3	0.4	0.5	-0.2

	x	5	6	7	8
_	P(x)	0.3	0.4	0.5	0.2

\overline{x}	5	6	7	8
P(x)	0.3	0.4	0.1	0.2

5. Find $\mu = \frac{\sum x \cdot f}{n}$ for Problem 2.

	n	-							
x	0	1	2	3	4	5	6	7	$\sum_{i=1}^{n}$
f	19	16	15	21	9	10	8	2	
x.f									

6. Find $\mu = \sum x \cdot P(x)$ for Problem 2, and compare it with the results of Problem 5.

$\mu = 1$	$\angle \omega = (\omega)$, 101 1 101	Jiciii 2, an	a compar	C 10 WIOII (iic resuit	5 01 1 1001	CIII O.	
\boldsymbol{x}	0	1	2	3	4	5	6	7	\sum
x.P(x)									

7. Find the Variance and the standard deviation for the probability distribution in Problem 2.

 ma	one variance and one	suandard deviation i	or one probability dis	stribution in 1 foblem
\boldsymbol{x}	P(x)	$x - \mu$	$(x-\mu)^2$	$(x-\mu)^2 P(x)$
0				
1				
2				
3				
4				
5				
6				
7				
Σ				

8. In a mini-roulette game, the wheel has 5 numbers 0, 1, 2, 3, and 4, marked on equally spaced slots. If a player bets \$1 on a number and wins, then the player keeps the dollar and receives an additional \$3. Otherwise the dollar is lost. Find the expected value of the gain.

Gain, x	P(x)	xP(x)
\sum		