1. List all the discontinuity points of f(x) and using the 3 parts of the definition of continuity list the reason why each of them is a discontinuity point, include **ALL** that apply:

2. Find a number k such that f(x) becomes continuous on $(-\infty, \infty)$. Show that your proposed k actually makes the function f continuous.

$$f(x) = \begin{cases} 7x - 2, & x \le 1\\ kx^2, & x > 1 \end{cases}$$

3. Show that $f(x) = x - \cos(x)$ has at least one root in the interval $[0, \frac{\pi}{2}]$.

4. We know
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
. Find $\lim_{x \to 0} \frac{3x}{\sin 5x}$. Show all the steps.

5. We know $-|x| \le x \cos \frac{1}{x} \le |x|$ for all x. Find $\lim_{x \to 0} x \cos \frac{1}{x}$. Explain your reasoning.