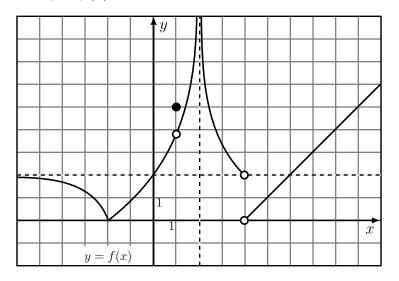
Name: Solution

SHOW ALL OF YOUR WORK.

The graph of the function y = f(x) is shown below.



- 1. Find the following limits for the function f(x) shown above.
 - (a) $\lim_{x \to -\infty} f(x) = 2$ (b) $\lim_{x \to \infty} f(x) = +\infty$ (c) $\lim_{x \to 2} f(x) = +\infty$ (e) $\lim_{x \to 4^-} f(x) = 2$ (f) $\lim_{x \to 4^+} f(x) = 0$ (g) $\lim_{x \to 1} f(x) \approx 3.8$
 - (d) $\lim_{x \to 0} \sqrt{f(x)} = \sqrt{2}$ (h) $\lim_{x \to 7} f(x) = 3$
- 2. List all the discontinuity points of f(x) shown above and list **ALL** reasons why f is discontinuous at that point.

$\begin{array}{c} \mathbf{Points} \\ (\text{only } x) \end{array}$	Reasons (Using the graph)	Reasons (Using the definition of continuity)
x = 1	there is a hole	$\lim_{x \to 1} f(x) \neq f(1)$
x = 2	the graph is broken	f(2) is not defined $\lim_{x \to 2} f(x) = \infty$
x=4	the graph is broken	f(4) is not defined lim f(x) DNE $x \rightarrow 4$

3. Evaluate the limit. Show all steps. Mention any theorems used. If the limit does not exist, explain why.

(a)
$$\lim_{x \to 2} \frac{3x^3 - 2x^2 + x}{x - 1} = \frac{3 \cdot 2 - 2 \cdot 2^2 + 2}{2 - 1} = 18$$

rational function
with 2 in its
domain = Cont's at 2

(b)
$$\lim_{x \to 1} \frac{x^3 - x}{x - 1} = \lim_{x \to 1} \frac{x(x-1)(x+1)}{x} = \lim_{x \to 1} x(x+1) = 1 \cdot 2 = 2$$

polynomial
 $\Rightarrow \text{ Cont's everywhere}$

(c)
$$\lim_{x \to 5} \sqrt{5-x} \rightarrow \begin{cases} \lim_{x \to 5^+} \sqrt{5-x} = 0 \\ \lim_{x \to 5^+} \sqrt{5-x} = 0 \end{cases} \implies \lim_{x \to 5^-} \sqrt{5-x} : DNE \qquad \Rightarrow \int_{x \to 5^-} \lim_{x \to 5^-} \sqrt{5-x} : DNE \end{cases}$$

(d)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos^2(x)}{x} = \cos^2 \frac{\pi}{2} = (\cos \frac{\pi}{2})^2 = 0$$

Cosx is cont's
everywhere, x^2 is
cont's everywhere
 $\Rightarrow (\cos x)^2$ is cont's
everywhere
(e)
$$\lim_{x \to -\infty} \frac{(3x-1)(2x^2+2)}{-x^3+x^2-x+1} = \lim_{x \to -\infty} \frac{(1-\frac{1}{3x})(2x^2)(1+\frac{2}{2x^2})}{-x^3(1+\frac{x^2}{-x^3}-\frac{x}{-x^3}+\frac{1}{x^3})} = \lim_{x \to -\infty} \frac{6\pi(1-\frac{\pi}{2})(1+\frac{\pi}{2})}{-\pi(1-\frac{\pi}{2})(1+\frac{\pi}{2})}$$

$$= \frac{6(1)(1)}{-1(1)} = -6$$

4. Find all the points where $f(x) = \ln(\frac{1}{x-1})$ is continuous. Explain your answer.

$$\begin{array}{l} h(x) \text{ is cont's on its domain: (0,00)} \\ and \frac{1}{x-1} > 0 \quad \text{when } x > 1, \text{ and is cont's when } x \neq 1 \\ \implies h\left(\frac{1}{x-1}\right) \text{ is cont's on (1,00)} \end{array}$$

5. Show that the equation $x^4 + 5x^3 + 5x - 1 = 0$ has at least one real solution in the interval (-1, 1).

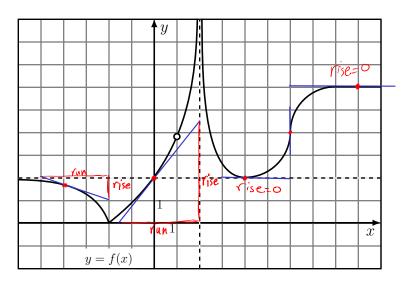
Let
$$f(x) = x^4 + 5x^3 + 5x - 1$$

then $f(1) = 10 > 0$
and $f(-1) = -10 < 0$
f is cont's on $[-1,1]$ since its' a polynomial.
By the interme diate value theorem there is a point c in $[-1,1]$
such that $f(c) = 0$, that is, c is a solution of the equation
 $x^4 + 5x^3 + 5x - 1 = 0$

6. Let f(x) be a function such that $1 - x^2 \le f(x) \le \cos x$, for all x in the interval $[-\pi/2, \pi/2]$. Find $\lim_{x \to 0} f(x)$.

$$\begin{array}{c} 1-x^{2} \text{ is a confl's function everywhere.} \\ (os x is a confl's function everywhere.} \\ lim 1-x^{2} = 1 \\ x - 70 \\ lim (os x = 1) \\ x - 90 \end{array}$$

The graph of the function y = f(x) is shown below.



7. Approximate the following derivatives for the function f(x) shown above. If the derivative does not exist, explain why.

(a)
$$f'(-4) \approx \frac{1}{3}$$

(b) $f'(-2)$ Undefined, sharp corner
(c) $f'(0) \approx \frac{4.5}{35}$
(d) $f'(1)$ undefined, discontinuous
(e) $f'(2)$ Undefined, discontinuous
(f) $f'(4) = 0$
(g) $f'(6)$ undefined, vertical tangent line
(h) $f'(9) = 0$

8. Let
$$f(x) = 1/x$$
.
(a) Find $f'(x)$, the derivative function of f .
 $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h} = \lim_{h \to \infty} \frac{1}{x+h} - \frac{1}{x} = \lim_{h \to \infty} \frac{4 - (k+h)}{x(x+h)} = \lim_{h \to \infty} \frac{-h}{h}$
 $h \to \infty$ h $h \to \infty$ h $h \to \infty$ h $h \to \infty$ h $h \to \infty$ h

(b) Find
$$f'(5)$$
. $f'(5) = \frac{-1}{x^2} \bigg|_{x=5} = \frac{-1}{5^2} = \frac{-1}{25}$